

Cozo database documentation

Welcome to the documentation for CozoDB,
a feature-rich, transactional, time-travel-enabled, relational-graph-vector database that uses Datalog for queries,
while making no performance compromises.

You can start immediately with the Tutorial, which you can follow without installing anything.

For installation instructions and language-specific APIs,
please refer to the GitHub page [https://github.com/cozodb/cozo].

Contents

	Tutorial
	First steps

	Time travel

	Extended example: the air routes dataset

	Importing dataset the hard way

	Queries
	Inline rules

	Fixed rules

	Query options

	Stored relations and transactions
	Stored relations

	Chaining queries

	Indices

	Triggers

	Storing large values

	Proximity searches
	HNSW (Hierarchical Navigable Small World) indices for vectors

	MinHash-LSH for near-duplicate indexing of strings and lists

	Full-text search (FTS)

	Text tokenization and filtering

	Time travel

	System ops
	Explain

	Ops for stored relations

	Monitor and kill

	Maintenance

	Types
	Runtime types

	Literals

	Column types

	Query execution
	Disjunctive normal form

	Stratification

	Magic set rewrites

	Semi-naïve evaluation

	Ordering of atoms

	Evaluating atoms

	Early stopping

	Tips for writing queries
	Dealing with nulls

	How to join relations

	Functions and operators
	Non-functions

	Operators representing functions

	Equality and Comparisons

	Boolean functions

	Mathematics

	Vector functions

	Json funcitons

	String functions

	List functions

	Binary functions

	Type checking and conversions

	Random functions

	Regex functions

	Timestamp functions

	Aggregations
	Semi-lattice aggregations

	Ordinary aggregations

	Utilities and algorithms
	Utilities

	Connectedness algorithms

	Pathfinding algorithms

	Community detection algorithms

	Centrality measures

	Miscellaneous

	Beyond CozoScript
	export_relations

	import_relations

	backup

	restore

	import_from_backup

	Callbacks

	Notes
	Some use cases for Cozo

	Cozo runs (almost) everywhere

	On performance

	Time travel in a database: a Cozo story

	Cozo 0.5: the versatile embeddable graph database with Datalog is half-way 1.0

	Experience CozoDB: The Hybrid Relational-Graph-Vector Database - The Hippocampus for LLMs

	Version 0.7: MinHash-LSH near-duplicate indexing, Full-text search (FTS) indexing, Json values and update

Indices

	Index

Tutorial

This tutorial will teach you the basics of using the Cozo database.

There are several ways you can run the queries in this tutorial:

	You can run the examples in your browser without installing anything: just open Cozo in Wasm [https://www.cozodb.org/wasm-demo/] and you are ready to go.

	You can download the appropriate cozo-* executable for your operating system from the release page [https://github.com/cozodb/cozo/releases], uncompress, rename to cozo, and run the REPL mode by running in a terminal cozo repl and follow along.

	If you are familiar with the Python datascience stack, you should following the instruction here [https://github.com/cozodb/pycozo] instead to run this notebook in Jupyter Lab, with the notebook file [https://github.com/cozodb/cozo-docs/blob/main/source/tutorial.ipynb].

	There are many other ways [https://github.com/cozodb/cozo#Install], but the above ones are the easiest.

The following cell is to set up Jupyter. Ignore if you are using other methods.

[1]:

%load_ext pycozo.ipyext_direct

First steps

Cozo is a relational database. The “hello world” query

[2]:

?[] <- [['hello', 'world', 'Cozo!']]

[2]:

 	

 Queries

Queries

CozoScript, a Datalog [https://en.wikipedia.org/wiki/Datalog] dialect, is the query language of the Cozo database.

A CozoScript query consists of one or many named rules.
Each named rule represents a relation, i.e. collection of data divided into rows and columns.
The rule named ? is the entry to the query,
and the relation it represents is the result of the query.
Each named rule has a rule head, which corresponds to the columns of the relation,
and a rule body, which specifies the content of the relation, or how the content should be computed.

Relations in Cozo (stored or otherwise) abide by the set semantics.
Thus even if a rule computes a row multiple times,
the resulting relation only contains a single copy.

There are two types of named rules in CozoScript:

	Inline rules, distinguished by using := to connect the head and the body.
The logic used to compute the resulting relation is defined inline.

	Fixed rules, distinguished by using <~ to connect the head and the body.
The logic used to compute the resulting relation is fixed according to which algorithm or utility is requested.

The constant rules which use <- to connect the head and the body are syntax sugar. For example:

const_rule[a, b, c] <- [[1, 2, 3], [4, 5, 6]]

is identical to:

const_rule[a, b, c] <~ Constant(data: [[1, 2, 3], [4, 5, 6]])

Inline rules

An example of an inline rule is:

hc_rule[a, e] := rule_a['constant_string', b], rule_b[b, d, a, e]

The rule body of an inline rule consists of multiple atoms joined by commas,
and is interpreted as representing the conjunction of these atoms.

Atoms

Atoms come in various flavours.
In the example above:

rule_a['constant_string', b]

is an atom representing a rule application: a rule named rule_a must exist in the same query
and have the correct arity (2 here).
Each row in the named rule is then unified with the bindings given as parameters in the square bracket:
here the first column is unified with a constant string, and unification succeeds only when the string
completely matches what is given;
the second column is unified with the variable b,
and as the variable is fresh at this point (because this is its first appearance),
the unification will always succeed. For subsequent atoms, the variable becomes bound:
it take on the value of whatever it was
unified with in the named relation.
When a bound variable is unified again, for example b in rule_b[b, d, a, e],
this unification will only succeed when the unified value is the same as the current value.
Thus, repeated use of the same variable in named rules corresponds to inner joins in relational algebra.

Atoms representing applications of stored relations are written as:

*stored_relation[bind1, bind2]

with the asterisk before the name.
Written in this way using square brackets, as many bindings as the arity of the stored relation must be given.
If some of the columns do not need to be bound, you can use the special underscore variable _:
it does not take part in any unifications.

You can also bind columns by name:

*stored_relation{col1: bind1, col2: bind2}

In this form, any number of columns may be omitted, and columns may come in any order.
If the name you want to give the binding is the same as the name of the column, you can write instead
*stored_relation{col1}, which is the same as *stored_relation{col1: col1}.

Expressions are also atoms, such as:

a > b + 1

a and b must be bound somewhere else in the rule. Expression atoms must evaluate to booleans,
and act as filters. Only rows where the expression atom evaluates to true are kept.

Unification atoms unify explicitly:

a = b + c + d

Whatever appears on the left-hand side must be a single variable and is unified with the result of the right-hand side.

Note

This is different from the equality operator ==,
where the left-hand side is a completely bound expression.
When the left-hand side is a single bound variable,
the equality and the unification operators are equivalent.

Unification atoms can also unify with multiple values in a list:

a in [x, y, z]

If the right-hand side does not evaluate to a list, an error is raised.

Head

As explained above, Atoms correspond to either relations, projections or filters in relational algebra.
Linked by commas, they therefore represent a joined relation, with columns either constants or variables.
The head of the rule, which in the simplest case is just a list of variables,
then defines the columns to keep in the output relation and their order.

Each variable in the head must be bound in the body (the safety rule).
Not all variables appearing in the body need to appear in the head.

Multiple definitions and disjunction

For inline rules only, multiple rule definitions may share the same name,
with the requirement that the arity of the head in each definition must match.
The returned relation is then formed by the disjunction of the multiple definitions (a union of rows).

You may also use the explicit disjunction operator or in a single rule definition:

rule1[a, b] := rule2[a] or rule3[a], rule4[a, b]

There is also an and operator, semantically identical to the comma ,
but has higher operator precedence than or (the comma has the lowest precedence).

Negation

Atoms in inline rules may be negated by putting not in front of them:

not rule1[a, b]

When negating rule applications and stored relations,
at least one binding must be bound somewhere else in the rule in a non-negated context (another safety rule).
The unbound bindings in negated rules remain unbound: negation cannot introduce new bindings to be used in the head.

Negated expressions act as negative filters,
which is semantically equivalent to putting ! in front of the expression.
Explict unification cannot be negated unless the left-hand side is bound,
in which case it is treated as an expression atom and then negated.

Recursion

The body of an inline rule may contain rule applications of itself,
and multiple inline rules may apply each other recursively.
The only exception is the entry rule ?, which cannot be referred to by other rules including itself.

Recursion cannot occur in negated positions (safety rule): r[a] := not r[a] is not allowed.

Warning

As CozoScript allows explicit unification,
queries that produce infinite relations may be accepted by the compiler.
One of the simplest examples is:

r[a] := a = 0
r[a] := r[b], a = b + 1
?[a] := r[a]

It is not even in principle possible for Cozo to rule out all infinite queries without wrongly rejecting valid ones.
If you accidentally submitted one, refer to the System ops chapter for how to terminate queries.
Alternatively, you can give a timeout for the query when you submit.

Aggregation

In CozoScript, aggregations are specified for inline rules by applying aggregation operators to variables
in the rule head:

?[department, count(employee)] := *personnel{department, employee}

here we have used the familiar count operator.
Any variables in the head without aggregation operators are treated as grouping variables,
and aggregation is applied using them as keys.
If you do not specify any grouping variables, then the resulting relation contains exactly one row.

Aggregation operators are applied to the rows computed by the body of the rule using bag semantics.
The reason for this complication is that if aggregations are applied with set semantics, then the following query:

?[count(employee)] := *personnel{employee}

does not do what you expect: it either returns a row with a single value 1 if there are any matching rows,
or it returns 0 if the stored relation is empty.

If a rule has several definitions, they must have identical aggregations applied in the same positions.

Cozo allows aggregations for self-recursion for a limited subset of aggregation operators,
the so-called semi-lattice aggregations (see this chapter):

shortest_distance[destination, min(distance)] :=
 route{source: 'A', destination, distance}

shortest_distance[destination, min(distance)] :=
 shortest_distance[existing_node, prev_distance], # recursion
 route{source: existing_node, distance: route_distance},
 distance = prev_distance + route_distance

?[destination, min_distance] :=
 shortest_distance[destination, min_distance]

Here self-recursion of shortest_distance contains the min aggregation.

For a rule-head to be considered semi-lattice-aggregate, the aggregations must come at the end of the rule head.
In the above example, if you write the head as shortest_distance[min(distance), destination],
the query engine will complain about unsafe recursion through aggregation, since written
this way min is considered an ordinary aggregation.

Fixed rules

The body of a fixed rule starts with the name of the utility or algorithm being applied,
then takes a specified number of named or stored relations as its input relations,
followed by options that you provide.
For example:

?[] <~ PageRank(*route[], theta: 0.5)

In the above example, the relation *route is the single input relation expected.
Input relations may be stored relations or relations resulting from rules.

Each utility/algorithm expects specific shapes for their input relations.
You must consult the documentation for each utility/algorithm to understand its API.

In fixed rules, bindings for input relations are usually omitted, but sometimes if they are provided
they are interpreted and used in algorithm-specific ways, for example in the DFS algorithm bindings.

In the example above, theta is an option of the algorithm,
which is required by the API to be an expression evaluating to a constant.
Each utility/algorithm expects specific types for the options;
some options have default values and may be omitted.

Each fixed rule has a determinate output arity.
Thus, the bindings in the rule head can be omitted,
but if they are provided, you must abide by the arity.

Query options

Each query can have options associated with it:

?[name] := *personnel{name}

:limit 10
:offset 20

In the example, :limit and :offset are query options with familiar meanings.
All query options start with a single colon :.
Queries options can appear before or after rules, or even sandwiched between rules.

Several query options deal with transactions for the database.
Those will be discussed in a separate chapter.
The rest of the query options are explained in the following.

	
:limit <N>

	Limit output relation to at most <N> rows.
If possible, execution will stop as soon as this number of output rows is collected (i.e., early stopping).

	
:offset <N>

	Skip the first <N> rows of the returned relation.

	
:timeout <N>

	Abort if the query does not complete within <N> seconds.
Seconds may be specified as an expression so that random timeouts are possible.
Defaults to 300 seconds. If you want to disable the timeout, set it to 0.

	
:sleep <N>

	If specified, the query will wait for <N> seconds after completion,
before committing or proceeding to the next query.
Seconds may be specified as an expression so that random timeouts are possible.
Useful for deliberately interleaving concurrent queries to test complex logic.

	
:sort <SORT_ARG> (, <SORT_ARG>)*

	Sort the output relation. If :limit or :offset are specified, they are applied after :sort.
Specify <SORT_ARG> as they appear in the rule head of the entry, separated by commas.
You can optionally specify the sort direction of each argument by prefixing them with + or -,
with minus denoting descending order, e.g. :sort -count(employee), dept_name
sorts by employee count in reverse order first,
then break ties with department name in ascending alphabetical order.

Warning

Aggregations must be done in inline rules, not in output sorting. In the above example,
the entry rule head must contain count(employee), employee alone is not acceptable.

	
:order <SORT_ARG> (, <SORT_ARG>)*

	Alias for :sort.

	
:assert none

	The query returns nothing if the output relation is empty, otherwise execution aborts with an error.
Useful for transactions and triggers.

	
:assert some

	The query returns nothing if the output relation contains at least one row,
otherwise, execution aborts with an error.
Useful for transactions and triggers.
You should consider adding :limit 1 to the query to ensure early termination
if you do not need to check all return tuples.

 Stored relations and transactions

Stored relations and transactions

In Cozo, data are stored in stored relations on disk.

Stored relations

To query stored relations,
use the *relation[...] or *relation{...} atoms in inline or fixed rules,
as explained in the last chapter.
To manipulate stored relations, use one of the following query options:

	
:create <NAME> <SPEC>

	Create a stored relation with the given name and spec.
No stored relation with the same name can exist beforehand.
If a query is specified, data from the resulting relation is put into the newly created stored relation.
This is the only stored relation-related query option in which a query may be omitted.

	
:replace <NAME> <SPEC>

	Similar to :create, except that if the named stored relation exists beforehand,
it is completely replaced. The schema of the replaced relation need not match the new one.
You cannot omit the query for :replace.
If there are any triggers associated, they will be preserved. Note that this may lead to errors if :replace
leads to schema change.

	
:put <NAME> <SPEC>

	Put rows from the resulting relation into the named stored relation.
If keys from the data exist beforehand, the corresponding rows are replaced with new ones.

	
:rm <NAME> <SPEC>

	Remove rows from the named stored relation. Only keys should be specified in <SPEC>.
Removing a non-existent key is not an error and does nothing.

	
:insert <NAME> <SPEC>

	Insert rows from the resulting relation into the named stored relation.
If keys from the data exist beforehand, an error is raised.

	
:update <NAME> <SPEC>

	Update rows in the named stored relation.
Only keys and any non-keys that you want to update should be specified in <SPEC>, the other non-keys will keep their old values.
Updating a non-existent key is an error.

	
:delete <NAME> <SPEC>

	Delete rows from the named stored relation.
Only keys and any non-keys that you want to delete should be specified in <SPEC>, the other non-keys will keep their old values.
Deleting a non-existent key raises an error.

	
:ensure <NAME> <SPEC>

	Ensure that rows specified by the output relation and spec exist in the database,
and that no other process has written to these rows when the enclosing transaction commits.
Useful for ensuring read-write consistency.

	
:ensure_not <NAME> <SPEC>

	Ensure that rows specified by the output relation and spec do not exist in the database
and that no other process has written to these rows when the enclosing transaction commits.
Useful for ensuring read-write consistency.

	
:returning

	When used in conjunction with the mutation ops :put, :rm, :insert, :update and :delete,
instead of returning a status code, the mutated rows are returned as a relation. The schema of the returned rows
follows the schema of the stored relation, with a special field _kind added to the front.
_kind can be "inserted" or "replaced" for :put, :insert and :update, and "requested"
and "deleted" for :rm and :delete. For deletion, the non-key fields for "requested" rows are filled with null.

You can rename and remove stored relations with the system ops ::rename and ::remove,
described in the system op chapter.

Create and replace

The format of <SPEC> is identical for all ops, but the semantics is a bit different.
We first describe the format and semantics for :create and :replace.

A spec, or a specification for columns, is enclosed in curly braces {} and separated by commas:

?[address, company_name, department_name, head_count] <- $input_data

:create dept_info {
 company_name: String,
 department_name: String,
 =>
 head_count: Int,
 address: String,
}

Columns before the symbol => form the keys (actually a composite key) for the stored relation,
and those after it form the values.
If all columns are keys, the symbol => may be omitted.
The order of columns matters.
Rows are stored in lexicographically sorted order in trees according to their keys.

In the above example, we explicitly specified the types for all columns.
In case of type mismatch,
the system will first try to coerce the values given, and if that fails, the query is aborted with an error.
You can omit types for columns, in which case their types default to Any?,
i.e. all values are acceptable.
For example, the above query with all types omitted is:

?[address, company_name, department_name, head_count] <- $input_data

:create dept_info { company_name, department_name => head_count, address }

In the example, the bindings for the output match the columns exactly (though not in the same order).
You can also explicitly specify the correspondence:

?[a, b, count(c)] <- $input_data

:create dept_info {
 company_name = a,
 department_name = b,
 =>
 head_count = count(c),
 address: String = b
}

You must use explicit correspondence if the entry head contains aggregation,
since names such as count(c) are not valid column names.
The address field above shows how to specify both a type and a correspondence.

Instead of specifying bindings, you can specify an expression that generates default values by using default:

?[a, b] <- $input_data

:create dept_info {
 company_name = a,
 department_name = b,
 =>
 head_count default 0,
 address default ''
}

The expression is evaluated anew for each row, so if you specified a UUID-generating functions,
you will get a different UUID for each row.

Put, update, remove, ensure and ensure-not

For :put, :remove, :ensure and :ensure_not,
you do not need to specify all existing columns in the spec if the omitted columns have a default generator,
or if the type of the column is nullable, in which case the value defaults to null.
For these operations, specifying default values does not have any effect and will not replace existing ones.

For :update, you must specify all keys and all columns that you want to update.

For :put and :ensure, the spec needs to contain enough bindings to generate all keys and values.
For :rm and :ensure_not, it only needs to generate all keys.

Chaining queries

Each script you send to Cozo is executed in its own transaction.
To ensure consistency of multiple operations on data,
You can define multiple queries in a single script,
by wrapping each query in curly braces {}.
Each query can have its independent query options.
Execution proceeds for each query serially, and aborts at the first error encountered.
The returned relation is that of the last query.

The :assert (some|none), :ensure and :ensure_not query options allow you to express complicated constraints
that must be satisfied for your transaction to commit.

This example uses three queries to put and remove rows atomically
(either all succeed or all fail), and ensure that at the end of the transaction
an untouched row exists:

{
 ?[a, b] <- [[1, 'one'], [3, 'three']]
 :put rel {a => b}
}
{
 ?[a] <- [[2]]
 :rm rel {a}
}
{
 ?[a, b] <- [[4, 'four']]
 :ensure rel {a => b}
}

When a transaction starts, a snapshot is used,
so that only already committed data,
or data written within the same transaction, are visible to queries.
At the end of the transaction, changes are only committed if there are no conflicts
and no errors are raised.
If any mutation activate triggers, those triggers execute in the same transaction.

There is actually a mini-language hidden behind query chains. What you have seen above consists of a number of simple
query expressions, each expression is a complete query enclosed in braces,
and the return value is the value of the last expression. There are other constructs as well:

	%if <cond> %then ... (%else ...) %end for conditional execution.
There is also a negated form beginning with %if_not. The <cond> part is either a query expression or
an ephemeral relation. Either way, the condition ends up being a relation, and a relation is considered falsy
if the relation contains no rows and truthy otherwise.

	%loop ... %end for looping, you can use %break and %continue inside the loop.
You can prefix the loop with %mark <marker>, and use %break <marker> or %continue marker
to jump sereral levels.

	%return <query expression or ephemeral relation, or empty> for early termination.

	%debug <ephemeral relation> for printing ephemeral relations to standard output.

	%ignore_error <query expression> executes the query expresison, but eats any error raised and continue.

	%swap <ephemeral relation> <another ephemeral relation> swaps two ephemeral relations.

What is the ephemeral relation mentioned above? This is a relation that can only be seen within the transaction
and which is gone when the transaction ends (hence it is useless in singleton queries).
It is created and used in the same way as stored relations,
but with names starting with the underscore _. You can think of them as variables in the chain query mini-language.

Let’s see several examples:

{:create _test {a}}

%loop
 %if { len[count(x)] := *_test[x]; ?[x] := len[z], x = z >= 10 }
 %then %return _test
 %end
 { ?[a] := a = rand_uuid_v1(); :put _test {a} }
%end

The return relation of this query consists of ten random rows. Note that in this example,
you must not use a constant rule when generating the random value:
the body of a constant rule is evaluated to a constant only once, which will make the query loop forever.

Another one:

{?[a] <- [[1], [2], [3]]; :replace _test {a}}

%loop
 { ?[a] := *_test[a]; :limit 1; :rm _test {a} }
 %debug _test

 %if_not _test
 %then %break
 %end
%end

%return _test

The return relation of this query is empty (very contrived way of removing elements).

Finally:

{?[a] <- [[1], [2], [3]]; :replace _test {a}}
{?[a] <- []; :replace _test2 {a}}
%swap _test _test2
%return _test

The return relation of this query is empty as well, since the two ephemeral relations have been swapped.

For any query occrurring in script, you can postfix it with as <name> where name is an identifier starting with the underscore,
and the result of the query will be stored in an ephemeral relation with the given name. The ephemeral relation is created as if
there is an :replace directive.

We use this functionality to run ad-hoc iterative queries. As the basic query language is already Turing complete,
you can actually write any algorithm without this mini-language, but the way of writing may be very contrived.
Try implementing PageRank with basic query. You will end up with many recursive aggregations.
Next try with chained queries. A breeze.

Multi-statement transaction

Cozo also supports multi-statement in the hosting language for selected libraries (currently Rust, Python, NodeJS)
and the standalone executable. The way to use it is to request a transaction first,
do your queries and mutations against the transaction, and finally commit or abort the transaction.
This is more flexible than using the chaining query mini-language, but is specific to each hosting environment.
Please refer to the respective documentations of the environments.

Indices

Since version 0.5, it is possible to create indices on stored relations.
In Cozo, indices are simply reordering of columns of the original stored relation.
As an example, let’s say we have a relation

:create r {a => b}

but we often want to run queries like ?[a] := *r{a, b: $value}. Without indiecs,
this will result in a full-scan. In this case we can do:

::index create r:idx {b, a}

You do not specify functional dependencies when creating indices (and in this case there are none anyway).

In Cozo, indices are read-only stored relations that you can query directly:

?[a] := *r:idx {a, b: $value}

In this case, running the original query will also use the index,
and hence is equivalent to the explicit form (which you can confirm with ::explain).
However, Cozo is very conservative in using indices in that if there is any chance that the use of an index might
decrease performance, then Cozo will not use an index. Currently, this means that only in situations when
using an index can avoid a full-scan will the index be used.
This behaviour ensures that you will not need to fight against suboptimal use of indices with difficult tricks:
just be explicit.

To drop an index:

::index drop r:idx

In Cozo, you do not need to specify all columns when creating an index,
and the database will complete the specified columns to a key. This means that if your stored relation is

:create r {a, b => c, d, e}

and you created an index as:

::index create r:i {d, b}

the database will automatically run the following index creation instead:

::index create r:i {d, b, a}

You can see what columns are actually created by running ::columns r:i.

Indices can be used as inputs to fixed rules. They may also be eligible in time-travel queries, as long as
their last key column is of type Validity.

Triggers

Cozo supports triggers attached to stored relations.
You attach triggers to a stored relation by running the system op ::set_triggers:

::set_triggers <REL_NAME>

on put { <QUERY> }
on rm { <QUERY> }
on replace { <QUERY> }
on put { <QUERY> } # you can specify as many triggers as you need

<QUERY> can be any valid query.

The on put triggers will run when new data is inserted or upserted,
which can be activated by :put, :create and :replace query options.
The implicitly defined rules _new[] and _old[] can be used in the triggers, and
contain the added rows and the replaced rows respectively.

The on rm triggers will run when data is deleted, which can be activated by a :rm query option.
The implicitly defined rules _new[] and _old[] can be used in the triggers,
and contain the keys of the rows for deleted rows (even if no row with the key actually exist) and the rows
actually deleted (with both keys and non-keys).

The on replace triggers will be activated by a :replace query option.
They are run before any on put triggers.

All triggers for a relation must be specified together, in the same ::set_triggers system op.
If used again, all the triggers associated with the stored relation are replaced.
To remove all triggers from a stored relation, use ::set_triggers <REL_NAME> followed by nothing.

As an example of using triggers to maintain an index manually, suppose we have the following relation:

:create rel {a => b}

and the manual index is:

:create rel.rev {b, a}

To manage the manual index automatically:

::set_triggers rel

on put {
 ?[a, b] := _new[a, b]

 :put rel.rev{ b, a }
}
on rm {
 ?[a, b] := _old[a, b]

 :rm rel.rev{ b, a }
}

With the index set up, you can use *rel.rev{..} in place of *rel{..} in your queries.

Note that unlike indices, there are ingestion APIs for which triggers are explicitly not run.
Also, if you want to manually manage indices with triggers, you have to populate the existing values
manually as well.

Warning

Triggers do not propagate. That is, if a trigger modifies a relation that has triggers associated,
those latter triggers will not run. This is different from the behaviour in earlier versions.
We changed it since trigger propagation creates more problems than it solves.

Storing large values

There a limit to the amount of data you can store in a single value or single row. The precise limit depends on the storage engine. For the in-memory engine it is obviously RAM-bound. For the SQLite engine the keys as as whole and the values as a whole are each stored as a single BLOB field in SQLite, and are subject to their limit [https://www.sqlite.org/limits.html]. For RocksDB engine, which is the recommended setup if you are thinking of storing large values, the keys as a whole is stored as a RocksDB key, which has a limit of 8MB, and keys should be kept small for performance. For values, CozoDB utilizes the BlobDB [https://github.com/facebook/rocksdb/wiki/BlobDB] functionality of RocksDB, and you are only limited by RAM and disk sizes.

Performance-wise, if large values are present, currently these values will be read into memory if the row is touched in the query. So it is recommended to store large values in a dedicated key-value relation in the database, with all the metadata stored in a separate relation. At query time, you should search/filter/join the metadata relation to find the rows you want, and then join them with the dedicated large value relation at the last stage.

 Proximity searches

Proximity searches

These kinds of proximity indices allow Cozo to perform fast searches for similar data. The HNSW index is a graph-based index that allows for fast approximate nearest neighbor searches. The MinHash-LSH index is a locality sensitive hash index that allows for fast approximate nearest neighbor searches. The FTS index is a full-text search index that allows for fast string matches.

HNSW (Hierarchical Navigable Small World) indices for vectors

Cozo supports vector proximity search using the HNSW (Hierarchical Navigable Small World) algorithm.

To use vector search, you first need to have a stored relation with vectors inside, for example:

:create table {k: String => v: <F32; 128>}

Next you create a HNSW index on a table containing vectors. You use the following system operator to create the index:

::hnsw create table:index_name {
 dim: 128,
 m: 50,
 dtype: F32,
 fields: [v],
 distance: L2,
 ef_construction: 20,
 filter: k != 'foo',
 extend_candidates: false,
 keep_pruned_connections: false,
}

The parameters are as follows:

	The dimension dim and the data type dtype (defaults to F32) has to match the dimensions of any vector you index.

	The fields parameter is a list of fields in the table that should be indexed.

	The indexed fields must only contain vectors of the same dimension and data type, or null, or a list of vectors of the same dimension and data type.

	The distance parameter is the distance metric to use: the options are L2 (default), Cosine and IP.

	The m controls the maximal number of outgoing connections from each node in the graph.

	The ef_construction parameter is the number of nearest neighbors to use when building the index: see the HNSW paper for details.

	The filter parameter, when given, is bound to the fields of the original relation and only those rows for which the expression evaluates to true are indexed.

	The extend_candidates parameter is a boolean (default false) that controls whether the index should extend the candidate list with the nearest neighbors of the nearest neighbors.

	The keep_pruned_connections parameter is a boolean (default false) that controls whether the index should keep pruned connections.

You can insert data as normally done into table. For vectors, use a list of numbers and it will be verified to have the correct dimension and converted. If you want to be more explicit, you can use the vec function.

After the index is created, you can use vector search inside normal queries in a similar manner to stored relations. For example:

?[dist, k, v] := ~table:index_name{ k, v |
 query: q,
 k: 2,
 ef: 20,
 bind_distance: dist,
 bind_vector: bv,
 bind_field: f,
 bind_field_idx: fi,
 filter: 1 + 1 == 2,
 radius: 0.1
 }, q = vec([200, 34])

The ~ followed by the index name signifies a vector search. In the braces, arguments before the vertical line are named bindings, with exactly the same semantics as in normal stored relations with named fields (i.e. they may be bound, or if they are unbound, the introduce fresh variables), and arguments after the vertical line are query parameters.

There are three required parameters: query is an expression that evaluates to a query vector of the expected type, and if it evaluates to a variable, the variable must be bound inside the rule; k controls how many results to return, and ef controls the number of neighbours to consider during the search process.

Next, there are three bind parameters that can bind variables to data that are only available in index or during the search process: distance binds the distance between the query vector and the result vector; vector binds the result vector; and field binds the field name of the result vector. The field_idx parameter binds the index of the field in the fields list of the index in case field resolves to a list of vectors, otherwise it is null. In case any of the bind parameters are bound to existing variables, they act as filters after k results are returned.

The parameter filter takes an expression that can only refer to the fields of the original relation, and only those rows for which the expression evaluates to true are returned, and this filtering results occurs during the search process, so the algorithm will strive to return k results even if it must filter out a larger number of rows. radius controls the largest distance any return vector can have from the query vector, and this filtering process also happens during the search.

The vector search can be used in any place where a stored relation may be used, even inside recursive rules (but be careful of non-termination).

As with normal indices, you can use the index relation as a read-only but otherwise normal relation in your query. You query the index directly by:

?[fr_k, to_k, dist] := *table:index_name {layer: 0, fr_k, to_k, dist}

It is recommended to always specify layer, otherwise a full scan is required.

The schema for the above index is the following:

{
 layer: Int,
 fr_k: String?,
 fr__field: Int?,
 fr__field_idx: Int?,
 to_k: String?,
 to__field: Int?,
 to__field_idx: Int?,
 =>
 dist: Float,
 hash: Bytes,
 ignore_link: Bool,
}

Layer is the layer in the HNSW hierarchy of graphs, with 0 the most detailed layer, -1 the layer more abstract than 0, -2 the even more abstract layer, etc. There is also a special layer 1 containing at most one row with all other keys set to null.

The fr_* and to_* fields mirror the indices of the indexed relation, and the fr__* and to__* fields indicate which vectors inside the original rows this edge connects.

dist is the distance between the two vectors when the row represents a link between two different vectors, otherwise the link is a self-loop and dist contains the degree of the node; hash is the hash of the vector, and ignore_link is a boolean that indicates whether this link should be ignored during the search process. The graph is guaranteed to be symmetric, but the incoming and outgoing links may have different ignore_link values, and they cannot both be true.

Walking the index graph at layer 0 amounts to probabilistically visiting “near” neigbours. More abstract layers are renormalized versions of the proximity graph and are harder to work with but are even more interesting theoretically.

To drop an HNSW index:

::hnsw drop table:index_name

MinHash-LSH for near-duplicate indexing of strings and lists

To use locality sensitive search on a relation containing string values, for example:

:create table {k: String => v: String?}

You can create a MinHash-LSH index on the v field by:

::lsh create table:index_name {
 extractor: v,
 extract_filter: !is_null(v),
 tokenizer: Simple,
 filters: [],
 n_perm: 200,
 target_threshold: 0.7,
 n_gram: 3,
 false_positive_weight: 1.0,
 false_negative_weight: 1.0,
}

This creates a MinHash-LSH index on the v field of the table. The index configuration includes the following parameters:

	extractor: v specifies that the v field will be used as the feature extractor. This parameter takes an expression, which must evaluate to a string, a list of values to be indexed, or null. If it evaluates to null, then the row is not indexed.

	extract_filter: !is_null(v): this is superfluous in this case, but in more general situations you can use this to skip indexing rows based on arbitary logic.

	tokenizer: Simple and filters: [] specifies the tokenizer to be used, see a later section for tokenizer.

	n_perm: 200 sets the number of permutations for the MinHash LSH index. Higher values will result in more accurate results at the cost of increased CPU and storage usage.

	target_threshold: 0.7 sets the target threshold for similarity comparisons when searching.

	n_gram: 3 sets the size of the n-gram used for shingling [https://en.wikipedia.org/wiki/W-shingling].

	false_positive_weight: 1.0 and false_negative_weight: 1.0 set the weights for false positives and false negatives.

At search time:

?[k, v] := ~table:index_name {k, v |
 query: $q,
 k: 2,
 filter: 1 + 1 == 2,
}

This will look for the top 2 most similar values to the query q. The filter parameter is evaluated on the bindings for the relation, and only those rows for which the filter evaluates to true are returned, before restricting to k results. The query parameter is a string, and will be subject to the same tokenization process.

In addition to strings, you can index and search for list of arbitrary values. In this case, the tokenizer, filters and n_gram parameters are ignored.

Again you can use the associated index relation as a normal relations in your query. There are two now: table:index_name and table:index_name:inv. You can use ::columns to look at their structure. In our case, the first is:

{
 hash: Bytes,
 src_k: String,
}

and the second is:

{
 k: String => minhash: List[Bytes]
}

The first it more useful: it loosely groups together duplicates according to the indexing parameters.

To drop:

::lsh drop table:index_name

Full-text search (FTS)

Full-text search should be familiar. For the following relation:

:create table {k: String => v: String?}

we can create an FTS index by:

::fts create table:index_name {
 extractor: v,
 extract_filter: !is_null(v),
 tokenizer: Simple,
 filters: [],
}

This creates an FTS index on the v field of the table. The index configuration includes the following parameters:

	extractor: v specifies that the v field will be used as the feature extractor. This parameter takes an expression, which must evaluate to a string or null. If it evaluates to null, then the row is not indexed.

	extract_filter: !is_null(v): this is superfluous in this case, but in more general situations you can use this to skip indexing rows based on arbitary logic.

	tokenizer: Simple and filters: [] specifies the tokenizer to be used, see a later section for tokenizer.

That’s it. At query time:

?[s, k, v] := ~table:index_name {k, v |
 query: $q,
 k: 10,
 filter: 1 + 1 == 2,
 score_kind: 'tf_idf',
 bind_score: s
}

:order -s

This query retrieves the top 10 results from the index index_name based on a search query $q. The filter parameter can be used to filter the results further based on additional conditions. The score_kind parameter specifies the scoring method, and in this case, it is set to 'tf_idf' which takes into consideration of global statistics when scoring documents. You can also use 'tf'. The resulting scores are bound to the variable s. Finally, the results are ordered in descending order of score (-s).

The search query must be a string and is processed by the same tokenizer as the index. The tokenizer is specified by the tokenizer parameter, and the filters parameter can be used to specify additional filters to be applied to the tokens. There is a mini-language for parsing the query:

	hello world, hello AND world, "hello" AND 'world': these all look for rows where both words occur. AND is case sensitive.

	hello OR world: look for rows where either word occurs.

	hello NOT world: look for rows where hello occurs but world does not.

	hell* wor*: look for rows having a word starting with hell and also a word starting with wor.

	NEAR/3(hello world bye): look for rows where hello, world, bye are within 3 words of each other. You can write NEAR(hello world bye) as a shorthand for NEAR/10(hello world bye).

	hello^2 OR world: look for rows where hello or world occurs, but hello has twice of its usual weighting when scoring.

	These can be combined and nested with parentheses (except that NEAR only takes literals and prefixes): hello AND (world OR bye).

The index relation has the following schema:

{
 word: String,
 src_k: String,
 =>
 offset_from: List[Int],
 offset_to: List[Int],
 position: List[Int],
 total_length: Int,
}

Explanation of the fields:

	word: the word that occurs in the document.

	src_k: the key of the document, the name and number varies according to the original relation schema.

	offset_from: the starting offsets of the word in the document.

	offset_to: the ending offsets of the word in the document.

	position: the position of the word in the document, counted as the position of entire tokens.

	total_length: the total number of tokens in the document.

To drop:

::fts drop table:index_name

Text tokenization and filtering

Text tokenization and filtering are used in both the MinHash-LSH and FTS indexes. The tokenizer is specified by the tokenizer parameter, and the filters parameter can be used to specify additional filters to be applied to the tokens.

CozoDB uses Tantivy’s [https://github.com/quickwit-oss/tantivy] tokenizers and filters (we incorporated their files directly in our source tree, as they are not available as a library). Tokenizer is specified in the configuration as a function call such as Ngram(9), or if you omit all arguments, Ngram is also acceptable. The following tokenizers are available:

	Raw: no tokenization, the entire string is treated as a single token.

	Simple: splits on whitespace and punctuation.

	Whitespace: splits on whitespace.

	Ngram(min_gram?, max_gram?, prefix_only?): splits into n-grams. min_gram is the minimum size of the n-gram (default 1), max_gram is the maximum size of the n-gram (default to min_gram), and prefix_only is a boolean indicating whether to only generate prefixes of the n-grams (default false).

	Cangjie(kind?): this is a text segmenter for the Chinese language. kind can be 'default', 'all', 'search' or 'unicode'.

After tokenization, multiple filters can be applied to the tokens. The following filters are available:

	Lowercase: converts all tokens to lowercase.

	AlphaNumOnly: removes all tokens that are not alphanumeric.

	AsciiFolding: converts all tokens to ASCII (lossy), i.e. passé goes to passe.

	Stemmer(lang): use a language-specific stemmer. The following languages are available: 'arabic', 'danish', 'dutch', 'english', 'finnish', 'french', 'german', 'greek', 'hungarian', 'italian', 'norwegian', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish', 'tamil', 'turkish'. As an exmple, the English stemmer converts 'running' to 'run'.

	Stopwords(lang): filter out stopwords specific to the language. The stopwords come from the stopwords-iso [https://github.com/stopwords-iso/stopwords-iso] project. Use the ISO 639-1 Code as specified on the project page. For example, Stopwords('en') for English will remove words such as 'the', 'a', 'an', etc.

For English text, the recommended setup is Simple for the tokenizer and [Lowercase, Stemmer('english'), Stopwords('en')] for the filters.

 Time travel

Time travel

Simply put, time travel in a database means tracking changes to data over time
and allowing queries to be logically executed at a point in time
to get a historical view of the data.
In a sense, this makes your database immutable,
since nothing is really deleted from the database ever.
This story gives some motivations why time travel may be valuable.

In Cozo, a stored relation is eligible for time travel if the last part of its key
has the explicit type Validity.
A validity has two parts: a time part, represented by a signed integer,
and an assertion part, represented by a boolean, so [42, true] represents
a validity. Sorting of validity is by the timestamp first, then by the assertive flag,
but each field is compared in descending order, so:

[1, true] < [1, false] < [-1, true]

All rows with identical key parts except the last validity part form
the history for that key, interpreted in the following way:
the fact represented by a row is valid if its flag is true, and
the range of its validity is from its timestamp (inclusive) up until
the timestamp of the next row under the same key (excluding the last validity part,
and here time is interpreted to flow forward). For example, let’s say we have the rows 'a', [10, true] => 'x', 'a', [20, true] => 'y', 'a', [30, true] => 'z', then at timestamps 10, 11, …, 19, 'a' is asserted to be 'x', and at timestamps 20, 21, …, 29, 'a' is asserted to be 'y', and from timestamp 30 onwards, 'a' is asserted to be 'z'. Before timestamp 10, 'a' doesn’t exist.

A row with a false assertive flag does nothing other than
making the previous fact invalid. For example, if we add to the above rows a row 'a', [15, false] => null, then 'a' no longer exists at timestamps 15, 16, …, 19, and at timestamp 20 onwards, 'a' is asserted to be 'y'.

When querying against such a stored relation, a validity specification can be attached,
for example:

?[name] := *rel{id: $id, name, @ 789}

The part after the symbol @ is the validity specification and must be a compile-time
constant, i.e., it cannot contain variables. Logically, it is as if
the query is against a snapshot of the relation containing only valid facts at the specified timestamp.

It is possible for two rows to have identical non-validity key parts and identical
timestamps, but differ in their assertive flags. In this case when queried against
the exact timestamp, the row is valid, as if the row with the false flag
does not exist. For example, if we add to the above rows a row 'a', [30, false] => null,
since we already have a row 'a', [30, true] => 'z', when queried against timestamp 30,
'a' is asserted to be 'z'. The effect of the retraction is invisible from any time-travel query.

The use case for this behaviour is to assert a fact only until a future time
when that fact is sure to remain valid. When that time comes, a new fact can be asserted,
and if the old fact remains valid there is no need to :rm the previous retraction.

You can use the function to_bool to extract the flag of a validity,
and to_int to extract the timestamp as an integer.

In Cozo it is up to you to interpret the timestamp part of validity. If you use it
to represent calendar time, then it is recommended that you treat it as microseconds since the
UNIX epoch. For this interpretation, the following convenience are provided:

	When putting facts into the database, instead of specifying the exact literal validity
as a list of two items, the strings ASSERT and RETRACT can be used instead,
and is interpreted as assertion and retraction at the current timestamp, respectively.
This has the additional guarantee that all insertion operations in the same transaction
using this method gets the same timestamp, and furthermore you can also use these strings
as the default values for a field, and they will do the right thing.

	In place of a list of two items for specifying the literal validity, you can use
RFC 3339 strings for assertion timestamps or validity specification in query.
For retraction, prefix the string by ~.

	When specifying validity against a stored relation, the string NOW uses the current timestamp,
and END uses a timestamp logically at the end of the world. Furthermore, the NOW timestamp
is guaranteed to be the same as what would be inserted using ASSERT and RETRACT.

	You can use the function format_timestamp to directly format a the timestamp part of a validity to
RFC 3339 strings.

An interesting use case of the time travel facility is to pre-generate the whole history for all time,
and in the user-facing interface query with the current time NOW.
The effect is that users see an illusion of real-time interactions:
a manifestation of Laplace’s daemon [https://en.wikipedia.org/wiki/Laplace%27s_demon].

 System ops

System ops

System ops start with a double-colon :: and must appear alone in a script.
In the following, we explain what each system op does, and the arguments they expect.

Explain

	
::explain { <QUERY> }

	A single query is enclosed in curly braces. Query options are allowed but ignored.
The query is not executed, but its query plan is returned instead.
Currently, there is no specification for the return format,
but you can decipher the result after reading Query execution.

Ops for stored relations

	
::relations

	List all stored relations in the database

	
::columns <REL_NAME>

	List all columns for the stored relation <REL_NAME>.

	
::indices <REL_NAME>

	List all indices for the stored relation <REL_NAME>.

	
::describe <REL_NAME> <DESCRIPTION>?

	Describe the stored relation <REL_NAME> and store it in the metadata.
If <DESCRIPTION> is given, it is stored as the description, otherwise the existing description is removed.
The description can be shown with ::relations. It serves as the documentation and signpost for humans and AI.

	
::remove <REL_NAME> (, <REL_NAME>)*

	Remove stored relations. Several can be specified, joined by commas.

	
::rename <OLD_NAME> -> <NEW_NAME> (, <OLD_NAME> -> <NEW_NAME>)*

	Rename stored relation <OLD_NAME> into <NEW_NAME>. Several may be specified, joined by commas.

	
::index ...

	Manage indices. See Stored relations and transactions for more details.

	
::hnsw ...

	Manage HNSW indices. See Proximity searches for more details.

	
::show_triggers <REL_NAME>

	Display triggers associated with the stored relation <REL_NAME>.

	
::set_triggers <REL_NAME> ...

	Set triggers for the stored relation <REL_NAME>. This is explained in more detail in Stored relations and transactions.

	
::access_level <ACCESS_LEVEL> <REL_NAME> (, <REL_NAME>)*

	Sets the access level of <REL_NAME> to the given level. The levels are:

	normal allows everything,

	protected disallows ::remove and :replace,

	read_only additionally disallows any mutations and setting triggers,

	hidden additionally disallows any data access (metadata access via ::relations, etc., are still allowed).

The access level functionality is to protect data from mistakes of the programmer,
not from attacks by malicious parties.

Monitor and kill

	
::running

	Display running queries and their IDs.

	
::kill <ID>

	Kill a running query specified by <ID>. The ID may be obtained by ::running.

Maintenance

	
::compact

	Instructs Cozo to run a compaction job.
Compaction makes the database smaller on disk and faster for read queries.

 Types

Types

Runtime types

Values in Cozo have the following runtime types:

	Null

	Bool

	Number

	String

	Bytes

	Uuid

	List

	Vector

	Json

	Validity

Number can be Float (double precision) or Int (signed, 64 bits). Cozo will auto-promote Int to Float when necessary.

List can contain any number of mixed-type values, including other lists.

Vector have fixed length and contain floats. There are two versions: F32 vectors and F64 vectors.

Cozo sorts values according to the above order, e.g. null is smaller than true, which is in turn smaller than the list [].

Within each type values are compared according to:

	false < true;

	-1 == -1.0 < 0 == 0.0 < 0.5 == 0.5 < 1 == 1.0;

	Lists are ordered lexicographically by their elements;

	Bytes are compared lexicographically;

	Strings are compared lexicographically by their UTF-8 byte representations;

	UUIDs are sorted in a way that UUIDv1 with similar timestamps are near each other.
This is to improve data locality and should be considered an implementation detail.
Depending on the order of UUID in your application is not recommended.

	Json values are compared by their string representation, which is a bit arbitrary and you should not rely on the order.

	Validity is introduced for the sole purpose of enabling time travel queries.

Warning

1 == 1.0 evaluates to true, but 1 and 1.0 are distinct values,
meaning that a relation can contain both as keys according to set semantics.
This is especially confusing when using JavaScript, which converts all numbers to float,
and python, which does not show a difference between the two when printing.
Using floating point numbers in keys is not recommended if the rows are accessed by these keys
(instead of accessed by iteration).

Literals

The standard notations null for the type Null, false and true for the type Bool are used.

Besides the usual decimal notation for signed integers,
you can prefix a number with 0x or -0x for hexadecimal representation,
with 0o or -0o for octal,
or with 0b or -0b for binary.
Floating point numbers include the decimal dot (may be trailing),
and may be in scientific notation.
All numbers may include underscores _ in their representation for clarity.
For example, 299_792_458 is the speed of light in meters per second.

Strings can be typed in the same way as they do in JSON using double quotes "",
with the same escape rules.
You can also use single quotes '' in which case the roles of double quotes and single quotes are switched.
There is also a “raw string” notation:

___"I'm a raw string"___

A raw string starts with an arbitrary number of underscores, and then a double quote.
It terminates when followed by a double quote and the same number of underscores.
Everything in between is interpreted exactly as typed, including any newlines.
By varying the number of underscores, you can represent any string without quoting.

There is no literal representation for Bytes or Uuid.
Use the appropriate functions to create them.
If you are inserting data into a stored relation with a column specified to contain bytes or UUIDs,
auto-coercion will kick in and use decode_base64 and to_uuid for conversion.

Lists are items enclosed between square brackets [], separated by commas.
A trailing comma is allowed after the last item.

There are no literal representations for Vector or Validity. Use the function vec to convert a list to a vector.

Json objects are enclosed between curly brackets {}, with key-value pairs separated by commas. For all other Json subtypes, use the function json to convert normal values to them.

Column types

The following atomic types can be specified for columns in stored relations:

	Int

	Float

	Bool

	String

	Bytes

	Uuid

	Json

	Validity

There is no Null type. Instead, if you put a question mark after a type, it is treated as nullable,
meaning that it either takes value in the type or is null.

Two composite types are available. A homogeneous list is specified by square brackets,
with the inner type in between, like this: [Int].
You may optionally specify how many elements are expected, like this: [Int; 10].
A heterogeneous list, or a tuple, is specified by round brackets, with the element types listed by position,
like this: (Int, Float, String). Tuples always have fixed lengths.

Vectors are also valid as component types and is written in the syntax <F32; 1024> for a 1024-element F32 vector. The type can also be F64.

A special type Any can be specified, allowing all values except null.
If you want to allow null as well, use Any?.
Composite types may contain other composite types or Any types as their inner types.

 Query execution

Query execution

Databases often consider how queries are executed an implementation detail
hidden behind an abstraction barrier that users need not care about,
so that databases can utilize query optimizers to choose the best query execution plan
regardless of how the query was originally written.
This abstraction barrier is leaky, however,
since bad query execution plans invariably occur,
and users need to “reach behind the curtain” to fix performance problems,
which is a difficult and tiring task.
The problem becomes more severe the more joins a query contains,
and graph queries tend to contain a large number of joins.

So in Cozo we take the pragmatic approach and make query execution deterministic
and easy to tell from how the query was written.
The flip side is that we demand the user to
know what is the best way to store their data,
which is in general less demanding than coercing the query optimizer.
Then, armed with knowledge of this chapter, writing efficient queries is easy.

Disjunctive normal form

Evaluation starts by canonicalizing inline rules into
disjunction normal form [https://en.wikipedia.org/wiki/Disjunctive_normal_form],
i.e., a disjunction of conjunctions, with any negation pushed to the innermost level.
Each clause of the outmost disjunction is then treated as a separate rule.
The consequence is that the safety rule may be violated
even though textually every variable in the head occurs in the body.
As an example:

rule[a, b] := rule1[a] or rule2[b]

is a violation of the safety rule since it is rewritten into two rules, each of which is missing a different binding.

Stratification

The next step in the processing is stratification.
It begins by making a graph of the named rules,
with the rules themselves as nodes,
and a link is added between two nodes when one of the rules applies the other.
This application is through atoms for inline rules, and input relations for fixed rules.

Next, some of the links are labelled stratifying:

	when an inline rule applies another rule through negation,

	when an inline rule applies another inline rule (not itself) that contains aggregations,

	when an inline rule applies itself and it has non-semi-lattice,

	when an inline rule applies another rule which is a fixed rule,

	when a fixed rule has another rule as an input relation.

The strongly connected components of the graph of rules are then determined and tested,
and if it found that some strongly connected component contains a stratifying link,
the graph is deemed unstratifiable, and the execution aborts.
Otherwise, Cozo will topologically sort the strongly connected components to
determine the strata of the rules:
rules within the same stratum are logically executed together,
and no two rules within the same stratum can have a stratifying link between them.
In this process,
Cozo will merge the strongly connected components into as few supernodes as possible
while still maintaining the restriction on stratifying links.
The resulting strata are then passed on to be processed in the next step.

You can see the stratum number assigned to rules by using the ::explain system op.

Magic set rewrites

Within each stratum, the input rules are rewritten using the technique of magic sets.
This rewriting ensures that the query execution does not
waste time calculating results that are later simply discarded.
As an example, consider:

reachable[a, b] := link[a, n]
reachable[a, b] := reachable[a, c], link[c, b]
?[r] := reachable['A', r]

Without magic set rewrites, the whole reachable relation is generated first,
then most of them are thrown away, keeping only those starting from 'A'.
Magic set rewriting avoids this problem.
You can see the result of the rewriting using ::explain.
The rewritten query is guaranteed to yield the same relation for ?,
and will in general yield fewer intermediate rows.

The rewrite currently only applies to inline rules without aggregations.

Semi-naïve evaluation

Now each stratum contains either a single fixed rule or a set of inline rules.
The single fixed rules are executed by running their specific implementations.
For the inline rules, each of them is assigned an output relation.
Assuming we know how to evaluate each rule given all the relations it depends on,
the semi-naïve algorithm can now be applied to the rules to yield all output rows.

The semi-naïve algorithm is a bottom-up evaluation strategy, meaning that it tries to deduce
all facts from a set of given facts.

Note

By contrast, top-down strategies start with stated goals and try to find proof for the goals.
Bottom-up strategies have many advantages over top-down ones when the whole output of each rule
is needed, but may waste time generating unused facts if only some of the output is kept.
Magic set rewrites are introduced to eliminate precisely this weakness.

Ordering of atoms

The compiler reorders the atoms in the body of the inline rules, and then
the atoms are evaluated.

After conversion to disjunctive normal forms,
each atom can only be one of the following:

	an explicit unification,

	applying a rule or a stored relation,

	an expression, which should evaluate to a boolean,

	a negation of an application.

The first two cases may introduce fresh bindings, whereas the last two cannot.
The reordering make all atoms that introduce new bindings stay where they are,
whereas all atoms that do not introduce new bindings are moved to the earliest possible place
where all their bindings are bound.
All atoms that introduce bindings correspond to
joining with a pre-existing relation followed by projections
in relational algebra, and all atoms that do not correspond to filters.
By applying filters as early as possible,
we minimize the number of rows before joining them with the next relation.

When writing the body of rules, we should aim to minimize the total number of rows generated.
A strategy that works almost in all cases is to put the most restrictive atoms which generate new bindings first.

Evaluating atoms

We now explain how a single atom which generates new bindings is processed.

For unifications, the right-hand side, an expression with all variables bound,
is simply evaluated, and the result is joined
to the current relation (as in a map-cat operation in functional languages).

Rules or stored relations are conceptually trees, with composite keys sorted lexicographically.
The complexity of their applications in atoms
is therefore determined by whether the bound variables and constants in the application bindings form a key prefix.
For example, the following application:

a_rule['A', 'B', c]

with c unbound, is very efficient, since this corresponds to a prefix scan in the tree with the key prefix ['A', 'B'],
whereas the following application:

a_rule[a, 'B', 'C']

where a is unbound, is very expensive, since we must do a full scan.
On the other hand, if a is bound, then this is only a logarithmic-time existence check.

For stored relations, you need to check its schema for the order of keys to deduce the complexity.
The system op ::explain may also give you some information.

Rows are generated in a streaming fashion,
meaning that relation joins proceed as soon as one row is available,
and do not wait until the whole relation is generated.

Early stopping

For the entry rule ?, if :limit is specified as a query option,
a counter is used to monitor how many valid rows are already generated.
If enough rows are generated, the query stops.
This only works when the entry rule is inline
and you do not specify :order.

 Tips for writing queries

Tips for writing queries

Dealing with nulls

Cozo is strict about types. A simple query such as:

?[a] := *rel[a, b], b > 0

will throw if some of the b is null: comparisons can only be made between values of the same type.
The solution is that you may decide to consider any null values to be equivalent to some default values:

?[a] := *rel[a, b], (b ~ -1) > 0

here ~ is the coalesce operator. The parentheses are not necessary, but it reads better this way.

You can also check for null explicitly:

?[a] := *rel[a, b], if(is_null(b), false, b > 0)

cond is also helpful in this case.

How to join relations

Suppose we have the following relation:

:create friend {fr, to}

Let’s say we want to find Alice’s friends’ friends’ friends’ friends’ friends. One way to write this is:

?[who] := *friends{fr: 'Alice', to: f1},
 *friends{fr: f1, to: f2},
 *friends{fr: f2, to: f3},
 *friends{fr: f3, to: f4},
 *friends{fr: f4, to: who}

Another way is:

f1[who] := *friends{fr: 'Alice', to: who}
f2[who] := f1[fr], *friends{fr, to: who}
f3[who] := f2[fr], *friends{fr, to: who}
f4[who] := f3[fr], *friends{fr, to: who}
?[who] := f4[fr], *friends{fr, to: who}

These two queries yield identical values. But on real networks, where loops abound,
the second way of writing executes exponentially faster than the first.
Why? Because of set semantics in relations, the second way of writing deduplicates at every turn,
whereas the first way of writing builds up all paths to the final layer of friends.
In fact, even if there are no duplicates, the second version may still be faster, because in Cozo
rules run in parallel whenever allowed by semantics and available resources.

The moral of the story is, always prefer to break your query into smaller rules.
It usually reads better, and unlike in some other databases,
it almost always executes faster in Cozo as well. But for this particular case, in which the query
is largely recursive, prefer to make it a recursive relation:

f_n[who, min(layer)] := *friends{fr: 'Alice', to: who}, layer = 1
f_n[who, min(layer)] := f_n[fr, last_layer], *friends{fr, to: who}, layer = last_layer + 1, layer <= 5
?[who] := f_n[who, 5]

The condition layer <= 5 is necessary to ensure termination.

Are there any situations where the first way of writing is acceptable? Yes:

?[who] := *friends{fr: 'Alice', to: f1},
 *friends{fr: f1, to: f2},
 *friends{fr: f2, to: f3},
 *friends{fr: f3, to: f4},
 *friends{fr: f4, to: who}
:limit 1

in this case, we stop at the first path, and this way of writing avoids the overhead of multiple rules
and is perhaps very slightly faster.

Also, if you want to count the different paths, you must write:

?[count(who)] := *friends{fr: 'Alice', to: f1},
 *friends{fr: f1, to: f2},
 *friends{fr: f2, to: f3},
 *friends{fr: f3, to: f4},
 *friends{fr: f4, to: who}

The multiple-rules way of writing gives wrong results due to set semantics.
Due to the presence of the aggregation count, this query only keeps a single path in memory at any instant,
so it won’t blow up your memory even on web-scale data.

 Functions and operators

Functions and operators

Functions can be used to build expressions.

All functions except those that extract the current time and those having names starting with rand_ are deterministic.

Non-functions

Functions must take in expressions as arguments, evaluate each argument in turn,
and then evaluate its implementation to produce a value that can be used in an expression.
We first describe constructs that look like, but are not functions.

These are language constucts that return Horn clauses instead of expressions:

	var = expr unifies expr with var. Different from expr1 == expr2.

	not clause negates a Horn clause clause. Different from !expr or negate(expr).

	clause1 or clause2 connects two Horn-clauses by disjunction. Different from or(expr1, expr2).

	clause1 and clause2 connects two Horn-clauses by conjunction. Different from and(expr1, expr2).

	clause1, clause2 connects two Horn-clauses by conjunction.

For the last three, or binds more tightly from and, which in turn binds more tightly than ,:
and and , are identical in every aspect except their binding powers.

These are constructs that return expressions:

	if(a, b, c) evaluates a, and if the result is true, evaluate b and returns its value, otherwise evaluate c and returns its value.
a must evaluate to a boolean.

	if(a, b) same as if(a, b, null)

	cond(a1, b1, a2, b2, ...) evaluates a1, if the results is true, returns the value of b1, otherwise continue with
a2 and b2. An even number of arguments must be given and the a``s must evaluate to booleans.
If all ``a``s are ``false, null is returned. If you want a catch-all clause at the end,
put true as the condition.

Operators representing functions

Some functions have equivalent operator forms, which are easier to type and perhaps more familiar. First the binary operators:

	a && b is the same as and(a, b)

	a || b is the same as or(a, b)

	a ^ b is the same as pow(a, b)

	a ++ b is the same as concat(a, b)

	a + b is the same as add(a, b)

	a - b is the same as sub(a, b)

	a * b is the same as mul(a, b)

	a / b is the same as div(a, b)

	a % b is the same as mod(a, b)

	a >= b is the same as ge(a, b)

	a <= b is the same as le(a, b)

	a > b is the same as gt(a, b)

	a < b is the same as le(a, b)

	a == b is the same as eq(a, b)

	a != b is the same as neq(a, b)

	a ~ b is the same as coalesce(a, b)

	a -> b is the same as maybe_get(a, b)

These operators have precedence as follows
(the earlier rows binds more tightly, and within the same row operators have equal binding power):

	->

	~

	^

	*, /

	+, -, ++

	%

	==, !=

	>=, <=, >, <

	&&

	||

With the exception of ^, all binary operators are left associative: a / b / c is the same as
(a / b) / c. ^ is right associative: a ^ b ^ c is the same as a ^ (b ^ c).

And the unary operators are:

	-a is the same as minus(a)

	!a is the same as negate(a)

Function applications using parentheses bind the tightest, followed by unary operators, then binary operators.

Equality and Comparisons

	
eq(x, y)

	Equality comparison. The operator form is x == y. The two arguments of the equality can be of different types, in which case the result is false.

	
neq(x, y)

	Inequality comparison. The operator form is x != y. The two arguments of the equality can be of different types, in which case the result is true.

	
gt(x, y)

	Equivalent to x > y

	
ge(x, y)

	Equivalent to x >= y

	
lt(x, y)

	Equivalent to x < y

	
le(x, y)

	Equivalent to x <= y

Note

The four comparison operators can only compare values of the same runtime type. Integers and floats are of the same type Number.

	
max(x, ...)

	Returns the maximum of the arguments. Can only be applied to numbers.

	
min(x, ...)

	Returns the minimum of the arguments. Can only be applied to numbers.

Boolean functions

	
and(...)

	Variadic conjunction. For binary arguments it is equivalent to x && y.

	
or(...)

	Variadic disjunction. For binary arguments it is equivalent to x || y.

	
negate(x)

	Negation. Equivalent to !x.

	
assert(x, ...)

	Returns true if x is true, otherwise will raise an error containing all its arguments as the error message.

Mathematics

	
add(...)

	Variadic addition. The binary version is the same as x + y.

	
sub(x, y)

	Equivalent to x - y.

	
mul(...)

	Variadic multiplication. The binary version is the same as x * y.

	
div(x, y)

	Equivalent to x / y.

	
minus(x)

	Equivalent to -x.

	
pow(x, y)

	Raises x to the power of y. Equivalent to x ^ y. Always returns floating number.

	
sqrt(x)

	Returns the square root of x.

	
mod(x, y)

	Returns the remainder when x is divided by y. Arguments can be floats. The returned value has the same sign as x. Equivalent to x % y.

	
abs(x)

	Returns the absolute value.

	
signum(x)

	Returns 1, 0 or -1, whichever has the same sign as the argument, e.g. signum(to_float('NEG_INFINITY')) == -1, signum(0.0) == 0, but signum(-0.0) == -1. Returns NAN when applied to NAN.

	
floor(x)

	Returns the floor of x.

	
ceil(x)

	Returns the ceiling of x.

	
round(x)

	Returns the nearest integer to the argument (represented as Float if the argument itself is a Float). Round halfway cases away from zero. E.g. round(0.5) == 1.0, round(-0.5) == -1.0, round(1.4) == 1.0.

	
exp(x)

	Returns the exponential of the argument, natural base.

	
exp2(x)

	Returns the exponential base 2 of the argument. Always returns a float.

	
ln(x)

	Returns the natual logarithm.

	
log2(x)

	Returns the logarithm base 2.

	
log10(x)

	Returns the logarithm base 10.

	
sin(x)

	The sine trigonometric function.

	
cos(x)

	The cosine trigonometric function.

	
tan(x)

	The tangent trigonometric function.

	
asin(x)

	The inverse sine.

	
acos(x)

	The inverse cosine.

	
atan(x)

	The inverse tangent.

	
atan2(x, y)

	The inverse tangent atan2 [https://en.wikipedia.org/wiki/Atan2] by passing x and y separately.

	
sinh(x)

	The hyperbolic sine.

	
cosh(x)

	The hyperbolic cosine.

	
tanh(x)

	The hyperbolic tangent.

	
asinh(x)

	The inverse hyperbolic sine.

	
acosh(x)

	The inverse hyperbolic cosine.

	
atanh(x)

	The inverse hyperbolic tangent.

	
deg_to_rad(x)

	Converts degrees to radians.

	
rad_to_deg(x)

	Converts radians to degrees.

	
haversine(a_lat, a_lon, b_lat, b_lon)

	Computes with the haversine formula [https://en.wikipedia.org/wiki/Haversine_formula]
the angle measured in radians between two points a and b on a sphere
specified by their latitudes and longitudes. The inputs are in radians.
You probably want the next function when you are dealing with maps,
since most maps measure angles in degrees instead of radians.

	
haversine_deg_input(a_lat, a_lon, b_lat, b_lon)

	Same as the previous function, but the inputs are in degrees instead of radians.
The return value is still in radians.

If you want the approximate distance measured on the surface of the earth instead of the angle between two points,
multiply the result by the radius of the earth,
which is about 6371 kilometres, 3959 miles, or 3440 nautical miles.

Note

The haversine formula, when applied to the surface of the earth, which is not a perfect sphere, can result in an error of less than one percent.

Vector functions

Now that mathematical functions that operate on floats can also take vectors as arguments, and apply the operation element-wise.

	
vec(l, type?)

	Takes a list of numbers and returns a vector.

Defaults to 32-bit float vectors. If you want to use 64-bit float vectors, pass 'F64' as the second argument.

	
rand_vec(n, type?)

	Returns a vector of n random numbers between 0 and 1.

Defaults to 32-bit float vectors. If you want to use 64-bit float vectors, pass 'F64' as the second argument.

	
l2_normalize(v)

	Takes a vector and returns a vector with the same direction but length 1, normalized using L2 norm.

	
l2_dist(u, v)

	Takes two vectors and returns the distance between them, using squared L2 norm: d = sum((ui-vi)^2).

	
ip_dist(u, v)

	Takes two vectors and returns the distance between them, using inner product: d = 1 - sum(ui*vi).

	
cos_dist(u, v)

	Takes two vectors and returns the distance between them, using cosine distance: d = 1 - sum(ui*vi) / (sqrt(sum(ui^2)) * sqrt(sum(vi^2))).

Json funcitons

	
json(x)

	Converts any value to a Json value. This function is idempotent and never fails.

	
is_json(x)

	Returns true if the argument is a Json value, false otherwise.

	
json_object(k1, v1, ...)

	Convert a list of key-value pairs to a Json object.

	
dump_json(x)

	Convert a Json value to its string representation.

	
parse_json(x)

	Parse a string to a Json value.

	
get(json, idx, default?)

	Returns the element at index idx in the Json json.

idx may be a string (for indexing objects), a number (for indexing arrays), or a list of strings and numbers (for indexing deep structures).

Raises an error if the requested element cannot be found, unless default is specified, in which cast default is returned.

	
maybe_get(json, idx)

	Returns the element at index idx in the Json json. Same as get(json, idx, null). The shorthand is json->idx.

	
set_json_path(json, path, value)

	Set the value at the given path in the given Json value. The path is a list of keys of strings (for indexing objects) or numbers (for indexing arrays). The value is converted to Json if it is not already a Json value.

	
remove_json_path(json, path)

	Remove the value at the given path in the given Json value. The path is a list of keys of strings (for indexing objects) or numbers (for indexing arrays).

	
json_to_scalar(x)

	Convert a Json value to a scalar value if it is a null, boolean, number or string, and returns the argument unchanged otherwise.

	
concat(x, y, ...)

	Concatenate (deep-merge) Json values. It is equivalent to the operator form x ++ y ++ ...

The concatenation of two Json arrays is the concatenation of the two arrays. The concatenation of two Json objects is the deep-merge of the two objects, meaning that their key-value pairs are combined, with any pairs that appear in both left and right having their values deep-merged. For all other cases, the right value wins.

String functions

	
length(str)

	Returns the number of Unicode characters in the string.

Can also be applied to a list or a byte array.

Warning

length(str) does not return the number of bytes of the string representation.
Also, what is returned depends on the normalization of the string.
So if such details are important, apply unicode_normalize before length.

	
concat(x, ...)

	Concatenates strings. Equivalent to x ++ y in the binary case.

Can also be applied to lists.

	
str_includes(x, y)

	Returns true if x contains the substring y, false otherwise.

	
lowercase(x)

	Convert to lowercase. Supports Unicode.

	
uppercase(x)

	Converts to uppercase. Supports Unicode.

	
trim(x)

	Removes whitespace [https://en.wikipedia.org/wiki/Whitespace_character] from both ends of the string.

	
trim_start(x)

	Removes whitespace [https://en.wikipedia.org/wiki/Whitespace_character] from the start of the string.

	
trim_end(x)

	Removes whitespace [https://en.wikipedia.org/wiki/Whitespace_character] from the end of the string.

	
starts_with(x, y)

	Tests if x starts with y.

Tip

starts_with(var, str) is preferred over equivalent (e.g. regex) conditions,
since the compiler may more easily compile the clause into a range scan.

	
ends_with(x, y)

	tests if x ends with y.

	
unicode_normalize(str, norm)

	Converts str to the normalization [https://en.wikipedia.org/wiki/Unicode_equivalence] specified by norm.
The valid values of norm are 'nfc', 'nfd', 'nfkc' and 'nfkd'.

	
chars(str)

	Returns Unicode characters of the string as a list of substrings.

	
from_substrings(list)

	Combines the strings in list into a big string. In a sense, it is the inverse function of chars.

Warning

If you want substring slices, indexing strings, etc., first convert the string to a list with chars,
do the manipulation on the list, and then recombine with from_substring.

List functions

	
list(x, ...)

	Constructs a list from its argument, e.g. list(1, 2, 3). Equivalent to the literal form [1, 2, 3].

	
is_in(el, list)

	Tests the membership of an element in a list.

	
first(l)

	Extracts the first element of the list. Returns null if given an empty list.

	
last(l)

	Extracts the last element of the list. Returns null if given an empty list.

	
get(l, n, default?)

	Returns the element at index n in the list l. Raises an error if the access is out of bounds, unless default is specified, in which cast default is returned. Indices start with 0.

	
maybe_get(l, n)

	Returns the element at index n in the list l. Same as get(l, n, null). The shorthand is l->n.

	
length(list)

	Returns the length of the list.

Can also be applied to a string or a byte array.

	
slice(l, start, end)

	Returns the slice of list between the index start (inclusive) and end (exclusive).
Negative numbers may be used, which is interpreted as counting from the end of the list.
E.g. slice([1, 2, 3, 4], 1, 3) == [2, 3], slice([1, 2, 3, 4], 1, -1) == [2, 3].

	
concat(x, ...)

	Concatenates lists. The binary case is equivalent to x ++ y.

Can also be applied to strings.

	
prepend(l, x)

	Prepends x to l.

	
append(l, x)

	Appends x to l.

	
reverse(l)

	Reverses the list.

	
sorted(l)

	Sorts the list and returns the sorted copy.

	
chunks(l, n)

	Splits the list l into chunks of n, e.g. chunks([1, 2, 3, 4, 5], 2) == [[1, 2], [3, 4], [5]].

	
chunks_exact(l, n)

	Splits the list l into chunks of n, discarding any trailing elements, e.g. chunks([1, 2, 3, 4, 5], 2) == [[1, 2], [3, 4]].

	
windows(l, n)

	Splits the list l into overlapping windows of length n. e.g. windows([1, 2, 3, 4, 5], 3) == [[1, 2, 3], [2, 3, 4], [3, 4, 5]].

	
union(x, y, ...)

	Computes the set-theoretic union of all the list arguments.

	
intersection(x, y, ...)

	Computes the set-theoretic intersection of all the list arguments.

	
difference(x, y, ...)

	Computes the set-theoretic difference of the first argument with respect to the rest.

Binary functions

	
length(bytes)

	Returns the length of the byte array.

Can also be applied to a list or a string.

	
bit_and(x, y)

	Calculate the bitwise and. The two bytes must have the same lengths.

	
bit_or(x, y)

	Calculate the bitwise or. The two bytes must have the same lengths.

	
bit_not(x)

	Calculate the bitwise not.

	
bit_xor(x, y)

	Calculate the bitwise xor. The two bytes must have the same lengths.

	
pack_bits([...])

	packs a list of booleans into a byte array; if the list is not divisible by 8, it is padded with false.

	
unpack_bits(x)

	Unpacks a byte array into a list of booleans.

	
encode_base64(b)

	Encodes the byte array b into the Base64 [https://en.wikipedia.org/wiki/Base64]-encoded string.

Note

encode_base64 is automatically applied when output to JSON since JSON cannot represent bytes natively.

	
decode_base64(str)

	Tries to decode the str as a Base64 [https://en.wikipedia.org/wiki/Base64]-encoded byte array.

Type checking and conversions

	
coalesce(x, ...)

	Returns the first non-null value; coalesce(x, y) is equivalent to x ~ y.

	
to_string(x)

	Convert x to a string: the argument is unchanged if it is already a string, otherwise its JSON string representation will be returned.

	
to_float(x)

	Tries to convert x to a float. Conversion from numbers always succeeds. Conversion from strings has the following special cases in addition to the usual string representation:

	INF is converted to infinity;

	NEG_INF is converted to negative infinity;

	NAN is converted to NAN (but don’t compare NAN by equality, use is_nan instead);

	PI is converted to pi (3.14159…);

	E is converted to the base of natural logarithms, or Euler’s constant (2.71828…).

Converts null and false to 0.0, true to 1.0.

	
to_int(x)

	Converts to an integer. If x is a validity, extracts the timestamp as an integer.

	
to_unity(x)

	Tries to convert x to 0 or 1: null, false, 0, 0.0, "", [], and the empty bytes are converted to 0,
and everything else is converted to 1.

	
to_bool(x)

	Tries to convert x to a boolean. The following are converted to false, and everything else is converted to true:

	null

	false

	0, 0.0

	"" (empty string)

	the empty byte array

	the nil UUID (all zeros)

	[] (the empty list)

	any validity that is a retraction

	
to_uuid(x)

	Tries to convert x to a UUID. The input must either be a hyphenated UUID string representation or already a UUID for it to succeed.

	
uuid_timestamp(x)

	Extracts the timestamp from a UUID version 1, as seconds since the UNIX epoch. If the UUID is not of version 1, null is returned. If x is not a UUID, an error is raised.

	
is_null(x)

	Checks for null.

	
is_int(x)

	Checks for integers.

	
is_float(x)

	Checks for floats.

	
is_finite(x)

	Returns true if x is an integer or a finite float.

	
is_infinite(x)

	Returns true if x is infinity or negative infinity.

	
is_nan(x)

	Returns true if x is the special float NAN. Returns false when the argument is not of number type.

	
is_num(x)

	Checks for numbers.

	
is_bytes(x)

	Checks for bytes.

	
is_list(x)

	Checks for lists.

	
is_string(x)

	Checks for strings.

	
is_uuid(x)

	Checks for UUIDs.

Random functions

	
rand_float()

	Generates a float in the interval [0, 1], sampled uniformly.

	
rand_bernoulli(p)

	Generates a boolean with probability p of being true.

	
rand_int(lower, upper)

	Generates an integer within the given bounds, both bounds are inclusive.

	
rand_choose(list)

	Randomly chooses an element from list and returns it. If the list is empty, it returns null.

	
rand_uuid_v1()

	Generate a random UUID, version 1 (random bits plus timestamp).
The resolution of the timestamp part is much coarser on WASM targets than the others.

	
rand_uuid_v4()

	Generate a random UUID, version 4 (completely random bits).

	
rand_vec(n, type?)

	Generates a vector of n random elements. If type is not given, it defaults to F32.

Regex functions

	
regex_matches(x, reg)

	Tests if x matches the regular expression reg.

	
regex_replace(x, reg, y)

	Replaces the first occurrence of the pattern reg in x with y.

	
regex_replace_all(x, reg, y)

	Replaces all occurrences of the pattern reg in x with y.

	
regex_extract(x, reg)

	Extracts all occurrences of the pattern reg in x and returns them in a list.

	
regex_extract_first(x, reg)

	Extracts the first occurrence of the pattern reg in x and returns it. If none is found, returns null.

Regex syntax

Matching one character:

. any character except new line
\d digit (\p{Nd})
\D not digit
\pN One-letter name Unicode character class
\p{Greek} Unicode character class (general category or script)
\PN Negated one-letter name Unicode character class
\P{Greek} negated Unicode character class (general category or script)

Character classes:

[xyz] A character class matching either x, y or z (union).
[^xyz] A character class matching any character except x, y and z.
[a-z] A character class matching any character in range a-z.
[[:alpha:]] ASCII character class ([A-Za-z])
[[:^alpha:]] Negated ASCII character class ([^A-Za-z])
[x[^xyz]] Nested/grouping character class (matching any character except y and z)
[a-y&&xyz] Intersection (matching x or y)
[0-9&&[^4]] Subtraction using intersection and negation (matching 0-9 except 4)
[0-9--4] Direct subtraction (matching 0-9 except 4)
[a-g~~b-h] Symmetric difference (matching `a` and `h` only)
[\[\]] Escaping in character classes (matching [or])

Composites:

xy concatenation (x followed by y)
x|y alternation (x or y, prefer x)

Repetitions:

x* zero or more of x (greedy)
x+ one or more of x (greedy)
x? zero or one of x (greedy)
x*? zero or more of x (ungreedy/lazy)
x+? one or more of x (ungreedy/lazy)
x?? zero or one of x (ungreedy/lazy)
x{n,m} at least n x and at most m x (greedy)
x{n,} at least n x (greedy)
x{n} exactly n x
x{n,m}? at least n x and at most m x (ungreedy/lazy)
x{n,}? at least n x (ungreedy/lazy)
x{n}? exactly n x

Empty matches:

^ the beginning of the text
$ the end of the text
\A only the beginning of the text
\z only the end of the text
\b a Unicode word boundary (\w on one side and \W, \A, or \z on the other)
\B not a Unicode word boundary

Timestamp functions

	
now()

	Returns the current timestamp as seconds since the UNIX epoch.
The resolution is much coarser on WASM targets than the others.

	
format_timestamp(ts, tz?)

	Interpret ts as seconds since the epoch and format as a string according to RFC3339 [https://www.rfc-editor.org/rfc/rfc3339].
If ts is a validity, its timestamp will be converted to seconds and used.

If a second string argument is provided, it is interpreted as a timezone [https://en.wikipedia.org/wiki/Tz_database] and used to format the timestamp.

	
parse_timestamp(str)

	Parse str into seconds since the epoch according to RFC3339.

	
validity(ts_micro, is_assert?)

	Returns a validity object with the given timestamp in microseconds.
If is_assert is true, the validity will be asserted, otherwise it will be assumed. Defaults to true.

 Aggregations

Aggregations

Aggregations in Cozo can be thought of as a function that acts on a stream of values
and produces a single value (the aggregate).

There are two kinds of aggregations in Cozo, ordinary aggregations and semi-lattice aggregations.
They are implemented differently in Cozo, with semi-lattice aggregations more powerful
(only the latter can be used recursively).

The power of semi-lattice aggregations derive from the additional properties they satisfy: a semilattice [https://en.wikipedia.org/wiki/Semilattice]:

	idempotency
	the aggregate of a single value a is a itself,

	commutativity
	the aggregate of a then b is equal to the aggregate of b then a,

	associativity
	it is immaterial where we put the parentheses in an aggregate application.

In auto-recursive semi-lattice aggregations, there are soundness constraints on what can be done on the bindings coming from the auto-recursive parts
within the body of the rule. Usually you do not need to worry about this at all since the obvious ways of using this functionality are all sound,
but as for non-termination due to fresh variables introduced by function applications,
Cozo does not (and cannot) check for unsoundness in this case.

Semi-lattice aggregations

	
min(x)

	Aggregate the minimum value of all x.

	
max(x)

	Aggregate the maximum value of all x.

	
and(var)

	Aggregate the logical conjunction of the variable passed in.

	
or(var)

	Aggregate the logical disjunction of the variable passed in.

	
union(var)

	Aggregate the unions of var, which must be a list.

	
intersection(var)

	Aggregate the intersections of var, which must be a list.

	
choice(var)

	Returns a non-null value. If all values are null, returns null. Which one is returned is deterministic but implementation-dependent
and may change from version to version.

	
min_cost([data, cost])

	The argument should be a list of two elements and this aggregation chooses the list of the minimum cost.

	
shortest(var)

	var must be a list. Returns the shortest list among all values. Ties will be broken non-deterministically.

	
bit_and(var)

	var must be bytes. Returns the bitwise ‘and’ of the values.

	
bit_or(var)

	var must be bytes. Returns the bitwise ‘or’ of the values.

Ordinary aggregations

	
count(var)

	Count how many values are generated for var (using bag instead of set semantics).

	
count_unique(var)

	Count how many unique values there are for var.

	
collect(var)

	Collect all values for var into a list.

	
unique(var)

	Collect var into a list, keeping each unique value only once.

	
group_count(var)

	Count the occurrence of unique values of var, putting the result into a list of lists,
e.g. when applied to 'a', 'b', 'c', 'c', 'a', 'c', the results is [['a', 2], ['b', 1], ['c', 3]].

	
bit_xor(var)

	var must be bytes. Returns the bitwise ‘xor’ of the values.

	
latest_by([data, time])

	The argument should be a list of two elements and this aggregation returns the data of the maximum time.
This is very similar to min_cost, the differences being that maximum instead of minimum is used,
and non-numerical costs are allowed.
Only data is returned.

	
smallest_by([data, cost])

	The argument should be a list of two elements and this aggregation returns the data of the minimum cost.
Non-numerical costs are allowed, unlike min_cost. The value null for cost are ignored when comparing.

	
choice_rand(var)

	Non-deterministically chooses one of the values of var as the aggregate.
Each value the aggregation encounters has the same probability of being chosen.

Note

This version of choice is not a semi-lattice aggregation
since it is impossible to satisfy the uniform sampling requirement while maintaining no state,
which is an implementation restriction unlikely to be lifted.

Statistical aggregations

	
mean(x)

	The mean value of x.

	
sum(x)

	The sum of x.

	
product(x)

	The product of x.

	
variance(x)

	The sample variance of x.

	
std_dev(x)

	The sample standard deviation of x.

 Utilities and algorithms

Utilities and algorithms

Fixed rules in CozoScript apply utilities or algorithms.

The algorithms described here are only available if your distribution of Cozo is compiled with the graph-algo feature flag.
Currently all prebuilt binaries except WASM are compiled with this flag on.

If you are using the Cozo libraries in Rust, Python or NodeJS, or if you are using the standalone executable,
you can also easily define custom fixed rules in the hosting environment: see the respective documentations
for how to do it.

Utilities

	
Constant(data: [...])

	Returns a relation containing the data passed in. The constant rule ?[] <- ... is
syntax sugar for ?[] <~ Constant(data: ...).

	Parameters:

	data – A list of lists, representing the rows of the returned relation.

	
ReorderSort(rel[...], out: [...], sort_by: [...], descending: false, break_ties: false, skip: 0, take: 0)

	Sort and then extract new columns of the passed in relation rel.

	Parameters:

	
	out (required) – A list of expressions which will be used to produce the output relation. Any bindings in the expressions will be bound to the named positions in rel.

	sort_by – A list of expressions which will be used to produce the sort keys. Any bindings in the expressions will be bound to the named positions in rel.

	descending – Whether the sorting process should be done in descending order. Defaults to false.

	break_ties – Whether ties should be broken, e.g. whether the first two rows with identical sort keys should be given ordering numbers 1 and 2 instead of 1 and 1. Defaults to false.

	skip – How many rows to skip before producing rows. Defaults to zero.

	take – How many rows at most to produce. Zero means no limit. Defaults to zero.

	Returns:

	The returned relation, in addition to the rows specified in the parameter out, will have the ordering prepended. The ordering starts at 1.

Tip

This algorithm serves a similar purpose to the global :order, :limit and :offset options, but can be applied to intermediate results. Prefer the global options if it is applied to the final output.

	
CsvReader(url: ..., types: [...], delimiter: ',', prepend_index: false, has_headers: true)

	Read a CSV file from disk or an HTTP GET request and convert the result to a relation.

This utility is not available on WASM targets. In addition, if the feature flag requests is off,
only reading from local file is supported.

	Parameters:

	
	url (required) – URL for the CSV file. For local file, use file://<PATH_TO_FILE>.

	types (required) – A list of strings interpreted as types for the columns of the output relation. If any type is specified as nullable and conversion to the specified type fails, null will be the result. This is more lenient than other functions since CSVs tend to contain lots of bad values.

	delimiter – The delimiter to use when parsing the CSV file.

	prepend_index – If true, row index will be prepended to the columns.

	has_headers – Whether the CSV file has headers. The reader will not interpret the header in any way but will instead simply ignore it.

	
JsonReader(url: ..., fields: [...], json_lines: true, null_if_absent: false, prepend_index: false)

	Read a JSON file for disk or an HTTP GET request and convert the result to a relation.

This utility is not available on WASM targets. In addition, if the feature flag requests is off,
only reading from local file is supported.

	Parameters:

	
	url (required) – URL for the JSON file. For local file, use file://<PATH_TO_FILE>.

	fields (required) – A list of field names, for extracting fields from JSON arrays into the relation.

	json_lines – If true, parse the file as lines of JSON objects, each line containing a single object; if false, parse the file as a JSON array containing many objects.

	null_if_absent – If a true and a requested field is absent, will output null in its place. If false and the requested field is absent, will throw an error.

	prepend_index – If true, row index will be prepended to the columns.

Connectedness algorithms

	
ConnectedComponents(edges[from, to])

	Computes the connected components [https://en.wikipedia.org/wiki/Connected_component_(graph_theory)] of a graph with the provided edges.

	Returns:

	Pairs containing the node index, and its component index.

	
StronglyConnectedComponent(edges[from, to])

	Computes the strongly connected components [https://en.wikipedia.org/wiki/Strongly_connected_component] of a graph with the provided edges.

	Returns:

	Pairs containing the node index, and its component index.

	
SCC(...)

	See Algo.StronglyConnectedComponent.

	
MinimumSpanningForestKruskal(edges[from, to, weight?])

	Runs Kruskal’s algorithm [https://en.wikipedia.org/wiki/Kruskal%27s_algorithm] on the provided edges to compute a minimum spanning forest [https://en.wikipedia.org/wiki/Minimum_spanning_tree]. Negative weights are fine.

	Returns:

	Triples containing the from-node, the to-node, and the cost from the tree root to the to-node. Which nodes are chosen to be the roots are non-deterministic. Multiple roots imply the graph is disconnected.

	
MinimumSpanningTreePrim(edges[from, to, weight?], starting?[idx])

	Runs Prim’s algorithm [https://en.wikipedia.org/wiki/Prim%27s_algorithm] on the provided edges to compute a minimum spanning tree [https://en.wikipedia.org/wiki/Minimum_spanning_tree]. starting should be a relation producing exactly one node index as the starting node. Only the connected component of the starting node is returned. If starting is omitted, which component is returned is arbitrary.

	Returns:

	Triples containing the from-node, the to-node, and the cost from the tree root to the to-node.

	
TopSort(edges[from, to])

	Performs topological sorting [https://en.wikipedia.org/wiki/Topological_sorting] on the graph with the provided edges. The graph is required to be connected in the first place.

	Returns:

	Pairs containing the sort order and the node index.

Pathfinding algorithms

	
ShortestPathBFS(edges[from, to], starting[start_idx], goals[goal_idx])

	Runs breadth-first search to determine the shortest path between the starting nodes and the goals.
Assumes the graph to be directed and all edges to be of unit weight.
Ties will be broken in an unspecified way.
If you need anything more complicated, use one of the other algorithms below.

	Returns:

	Triples containing the starting node, the goal, and a shortest path.

	
ShortestPathDijkstra(edges[from, to, weight?], starting[idx], goals[idx], undirected: false, keep_ties: false)

	Runs Dijkstra’s algorithm [https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm] to determine the shortest paths between the starting nodes and the goals. Weights, if given, must be non-negative.

	Parameters:

	
	undirected – Whether the graph should be interpreted as undirected. Defaults to false.

	keep_ties – Whether to return all paths with the same lowest cost. Defaults to false, in which any one path of the lowest cost could be returned.

	Returns:

	4-tuples containing the starting node, the goal, the lowest cost, and a path with the lowest cost.

	
KShortestPathYen(edges[from, to, weight?], starting[idx], goals[idx], k: expr, undirected: false)

	Runs Yen’s algorithm [https://en.wikipedia.org/wiki/Yen%27s_algorithm] (backed by Dijkstra’s algorithm) to find the k-shortest paths between nodes in starting and nodes in goals.

	Parameters:

	
	k (required) – How many routes to return for each start-goal pair.

	undirected – Whether the graph should be interpreted as undirected. Defaults to false.

	Returns:

	4-tuples containing the starting node, the goal, the cost, and a path with the cost.

	
BreadthFirstSearch(edges[from, to], nodes[idx, ...], starting?[idx], condition: expr, limit: 1)

	Runs breadth first search on the directed graph with the given edges and nodes, starting at the nodes in starting. If starting is not given, it will default to all of nodes, which may be quite a lot to calculate.

	Parameters:

	
	condition (required) – The stopping condition, will be evaluated with the bindings given to nodes. Should evaluate to a boolean, with true indicating an acceptable answer was found.

	limit – How many answers to produce for each starting nodes. Defaults to 1.

	Returns:

	Triples containing the starting node, the answer node, and the found path connecting them.

	
BFS(...)

	See Algo.BreadthFirstSearch.

	
DepthFirstSearch(edges[from, to], nodes[idx, ...], starting?[idx], condition: expr, limit: 1)

	Runs depth first search on the directed graph with the given edges and nodes, starting at the nodes in starting. If starting is not given, it will default to all of nodes, which may be quite a lot to calculate.

	Parameters:

	
	condition (required) – The stopping condition, will be evaluated with the bindings given to nodes. Should evaluate to a boolean, with true indicating an acceptable answer was found.

	limit – How many answers to produce for each starting nodes. Defaults to 1.

	Returns:

	Triples containing the starting node, the answer node, and the found path connecting them.

	
DFS(...)

	See Algo.DepthFirstSearch.

	
ShortestPathAStar(edges[from, to, weight], nodes[idx, ...], starting[idx], goals[idx], heuristic: expr)

	Computes the shortest path from every node in starting to every node in goals by the A* algorithm [https://en.wikipedia.org/wiki/A*_search_algorithm].

edges are interpreted as directed, weighted edges with non-negative weights.

	Parameters:

	heuristic (required) – The search heuristic expression. It will be evaluated with the bindings from goals and nodes. It should return a number which is a lower bound of the true shortest distance from a node to the goal node. If the estimate is not a valid lower-bound, i.e. it over-estimates, the results returned may not be correct.

	Returns:

	4-tuples containing the starting node index, the goal node index, the lowest cost, and a path with the lowest cost.

Tip

The performance of A* star algorithm heavily depends on how good your heuristic function is. Passing in 0 as the estimate is always valid, but then you really should be using Dijkstra’s algorithm.

Good heuristics usually come about from a metric in the ambient space in which your data live, e.g. spherical distance on the surface of a sphere, or Manhattan distance on a grid. Func.Math.haversine_deg_input could be helpful for the spherical case. Note that you must use the correct units for the distance.

Providing a heuristic that is not guaranteed to be a lower-bound might be acceptable if you are fine with inaccuracies. The errors in the answers are bound by the sum of the margins of your over-estimates.

Community detection algorithms

	
ClusteringCoefficients(edges[from, to, weight?])

	Computes the clustering coefficients [https://en.wikipedia.org/wiki/Clustering_coefficient] of the graph with the provided edges.

	Returns:

	4-tuples containing the node index, the clustering coefficient, the number of triangles attached to the node, and the total degree of the node.

	
CommunityDetectionLouvain(edges[from, to, weight?], undirected: false, max_iter: 10, delta: 0.0001, keep_depth?: depth)

	Runs the Louvain algorithm [https://en.wikipedia.org/wiki/Louvain_method] on the graph with the provided edges, optionally non-negatively weighted.

	Parameters:

	
	undirected – Whether the graph should be interpreted as undirected. Defaults to false.

	max_iter – The maximum number of iterations to run within each epoch of the algorithm. Defaults to 10.

	delta – How much the modularity [https://en.wikipedia.org/wiki/Modularity_(networks)] has to change before a step in the algorithm is considered to be an improvement.

	keep_depth – How many levels in the hierarchy of communities to keep in the final result. If omitted, all levels are kept.

	Returns:

	Pairs containing the label for a community, and a node index belonging to the community. Each label is a list of integers with maximum length constrained by the parameter keep_depth. This list represents the hierarchy of sub-communities containing the list.

	
LabelPropagation(edges[from, to, weight?], undirected: false, max_iter: 10)

	Runs the label propagation algorithm [https://en.wikipedia.org/wiki/Label_propagation_algorithm] on the graph with the provided edges, optionally weighted.

	Parameters:

	
	undirected – Whether the graph should be interpreted as undirected. Defaults to false.

	max_iter – The maximum number of iterations to run. Defaults to 10.

	Returns:

	Pairs containing the integer label for a community, and a node index belonging to the community.

Centrality measures

	
DegreeCentrality(edges[from, to])

	Computes the degree centrality of the nodes in the graph with the given edges. The computation is trivial, so this should be your first thing to try when exploring new data.

	Returns:

	4-tuples containing the node index, the total degree (how many edges involve this node), the out-degree (how many edges point away from this node), and the in-degree (how many edges point to this node).

	
PageRank(edges[from, to, weight?], undirected: false, theta: 0.85, epsilon: 0.0001, iterations: 10)

	Computes the PageRank [https://en.wikipedia.org/wiki/PageRank] from the given graph with the provided edges, optionally weighted.

	Parameters:

	
	undirected – Whether the graph should be interpreted as undirected. Defaults to false.

	theta – A number between 0 and 1 indicating how much weight in the PageRank matrix is due to the explicit edges. A number of 1 indicates no random restarts. Defaults to 0.8.

	epsilon – Minimum PageRank change in any node for an iteration to be considered an improvement. Defaults to 0.05.

	iterations – How many iterations to run. Fewer iterations are run if convergence is reached. Defaults to 20.

	Returns:

	Pairs containing the node label and its PageRank.

	
ClosenessCentrality(edges[from, to, weight?], undirected: false)

	Computes the closeness centrality [https://en.wikipedia.org/wiki/Closeness_centrality] of the graph. The input relation represent edges connecting node indices which are optionally weighted.

	Parameters:

	undirected – Whether the edges should be interpreted as undirected. Defaults to false.

	Returns:

	Node index together with its centrality.

	
BetweennessCentrality(edges[from, to, weight?], undirected: false)

	Computes the betweenness centrality [https://en.wikipedia.org/wiki/Betweenness_centrality] of the graph. The input relation represent edges connecting node indices which are optionally weighted.

	Parameters:

	undirected – Whether the edges should be interpreted as undirected. Defaults to false.

	Returns:

	Node index together with its centrality.

Warning

BetweennessCentrality is very expensive for medium to large graphs. If possible, collapse large graphs into supergraphs by running a community detection algorithm first.

Miscellaneous

	
RandomWalk(edges[from, to, ...], nodes[idx, ...], starting[idx], steps: 10, weight?: expr, iterations: 1)

	Performs random walk on the graph with the provided edges and nodes, starting at the nodes in starting.

	Parameters:

	
	steps (required) – How many steps to walk for each node in starting. Produced paths may be shorter if dead ends are reached.

	weight – An expression evaluated against bindings of nodes and bindings of edges, at a time when the walk is at a node and choosing between multiple edges to follow. It should evaluate to a non-negative number indicating the weight of the given choice of edge to follow. If omitted, which edge to follow is chosen uniformly.

	iterations – How many times walking is repeated for each starting node.

	Returns:

	Triples containing a numerical index for the walk, the starting node, and the path followed.

 Beyond CozoScript

Beyond CozoScript

Most functionalities of the Cozo database are accessible via the CozoScript API.
However, other functionalities either cannot conform to the “always return a relation” constraint,
or are of such a nature as to make a separate API desirable. These are described here.

The calling convention and even names of the APIs may differ on different target languages, please refer
to the respective language-specific documentation. Here we use the Python API as an example
to describe what they do.

	
export_relations(self, relations)

	Export the specified relations. It is guaranteed that the exported data form a consistent snapshot of
what was stored in the database.

	Parameters:

	relations – names of the relations in a list.

	Returns:

	a dict with string keys for the names of relations, and values containing all the rows.

	
import_relations(self, data)

	Import data into a database. The data are imported inside a transaction, so that either all imports are successful, or none are.
If conflicts arise because of concurrent modification to the database, via either CosoScript queries or other imports,
the transaction will fail.

The relations to import into must exist beforehand, and the data given must match the schema defined.

This API can be used to batch-put or remove data from several stored relations atomically.
The data parameter can contain relation names such as "rel_a", or relation names prefixed by a minus sign such as "-rel_a".
For the former case, every row given for the relation will be put into the database, i.e. upsert semantics.
For the latter case, the corresponding rows are removed from the database, and you should only specify the key part of the rows.
As for rm in CozoScript, it is not an error to remove non-existent rows.

Warning

Triggers are not run for direct imports.

	Parameters:

	data – should be given as a dict with string keys, in the same format as returned by export_relations.
For example: {"rel_a": {"headers": ["x", "y"], "rows": [[1, 2], [3, 4]]}, "rel_b": {"headers": ["z"], "rows": []}}

	
backup(self, path)

	Backup a database to the specified path.
The exported data is guaranteed to form a consistent snapshot of what was stored in the database.

This backs up everything: you cannot choose what to back up. It is also much more efficient than exporting all stored
relations via export_relations, and only a tiny fraction of the total data needs to reside in memory during
backup.

This function is only available if the storage-sqlite feature flag was on when compiling.
The flag is on for all pre-built binaries except the WASM binaries.
The backup produced by this API can then be used as an independent SQLite-based Cozo database.
If you want to store the backup for future use, you should compress it to save a lot of disk space.

	Parameters:

	path – the path to write the backup into. For a remote database, this is a path on the remote machine.

	
restore(self, path)

	Restore the database from a backup. Must be called on an empty database.

This restores everything: you cannot choose what to restore.

	Parameters:

	path – the path to the backup. You cannot restore remote databases this way: use the executable directly.

	
import_from_backup(self, path, relations)

	Import stored relations from a backup.

In terms of semantics, this is like import_relations, except that data comes from the backup file directly,
and you can only put, not rm. It is also more memory-efficient than import_relations.

Warning

Triggers are not run for direct imports.

	Parameters:

	
	path – path to the backup file. For remote databases, this is a path on the remote machine.

	relations – a list containing the names of the relations to import. The relations must exist
in the database.

Callbacks

It is possible to register callbacks so that you get notified when requested stored relations change.
Currently, this functionality is available for Rust, Python and NodeJS libraries and the standalone executable only. Refer to the respective documentation for how to use it.

 Notes

Notes

Here are some miscellaneous notes about various aspects of CozoDB.

	Some use cases for Cozo
	Interconnected relations

	Just a graph

	Hidden structures

	Knowledge augmentation

	Cozo runs (almost) everywhere

	On performance
	The setup

	Loading data
	Batch import

	Backup

	Restoring from backup

	Transactional queries (OLTP)
	Point read

	Point write

	Point update

	Mixed queries?

	Analytical queries (OLAP)
	Friends of friends

	Aggregations

	Pagerank

	Conclusion

	Time travel in a database: a Cozo story
	The cost of time travel

	Dreamy indices

	Back to reality

	But what about performance?

	Cozo 0.5: the versatile embeddable graph database with Datalog is half-way 1.0

	Experience CozoDB: The Hybrid Relational-Graph-Vector Database - The Hippocampus for LLMs
	Introduction
	Highlights

	Comparisons to other systems

	The emergence of vector search in CozoDB
	From relational thinking to graph thinking

	Augmenting graphs with knowledge and ontologies

	LLMs provide implicit knowledge graphs

	Toward the hippocampus for AI
	Knowledge management for AI

	The fractal von Neumann architecture

	The interpretation of artificial dreams

	Towards intelligence

	Version 0.7: MinHash-LSH near-duplicate indexing, Full-text search (FTS) indexing, Json values and update
	MinHash-LSH indices

	Full-text search

	Json values and update

	Misc

 Some use cases for Cozo

Some use cases for Cozo

As Cozo is a general-purpose database,
it can be used in situations where traditional databases such as PostgreSQL and SQLite are used.
However, Cozo is designed to overcome several shortcomings of traditional databases,
and hence fares especially well in specific situations:

Interconnected relations

You have a lot of interconnected relations and the usual queries need to relate many relations together.
In other words, you need to query a complex graph.

An example is a system granting permissions to users for specific tasks.
In this case, users may have roles, belong to an organization hierarchy,
and tasks similarly have organizations and special provisions associated with them.
The granting process itself may also be a complicated rule encoded as data within the database.

With a traditional database, the corresponding SQL tend to become an entangled web of nested queries,
with many tables joined together, and maybe even with some recursive CTE thrown in.
This is hard to maintain, and worse,
the performance is unpredictable since query optimizers in general fail when you have over twenty tables joined together.

With Cozo, on the other hand,
Horn clauses make it easy to break the logic into smaller pieces and write clear, easily testable queries.
Furthermore, the deterministic evaluation order makes identifying and solving performance problems easier.

Just a graph

Your data may be simple, even a single table, but it is inherently a graph.

We have seen an example in the Tutorial: the air route dataset,
where the key relation contains the routes connecting airports.

In traditional databases, when you are given a new relation,
you try to understand it by running aggregations on it to collect statistics:
what is the distribution of values, how are the columns correlated, etc.

In Cozo you can do the same exploratory analysis,
except now you also have graph algorithms that you can easily apply to understand things such as:
what is the most connected entity, how are the nodes connected,
and what are the communities structure within the nodes.

Hidden structures

Your data contains hidden structures that only become apparent when you identify the scales of the relevant structures.

Examples are most real networks, such as social networks, which have a very rich hierarchy of structures.

In a traditional database, you are limited to doing nested aggregations and filtering,
i.e. a form of multifaceted data analysis.
For example, you can analyze by gender, geography, job or combinations of them.
For structures hidden in other ways, or if such categorizing tags are not already present in your data,
you are out of luck.

With Cozo, you can now deal with emergent and fuzzy structures by using e.g. community detection algorithms,
and collapse the original graph into a coarse-grained graph consisting of super-nodes and super-edges.
The process can be iterated to gain insights into even higher-order emergent structures.
This is possible in a social network with only edges and no categorizing tags associated with nodes at all,
and the discovered structures almost always have meanings correlated to real-world events and organizations,
for example, forms of collusion and crime rings. Also, from a performance perspective,
coarse-graining is a required step in analyzing the so-called big data,
since many graph algorithms have high complexity and are only applicable to the coarse-grained small or medium networks.

Knowledge augmentation

You want to understand your live business data better by augmenting it into a knowledge graph.

For example, your sales database contains product, buyer, inventory, and invoice tables.
The augmentation is external data about the entities in your data in the form of taxonomies and ontologies in layers.

This is inherently a graph-theoretic undertaking and traditional databases are not suitable.
Usually, a dedicated graph processing engine is used, separate from the main database.

With Cozo, it is possible to keep your live data and knowledge graph analysis together,
and importing new external data and doing analysis is just a few lines of code away.
This ease of use means that you will do the analysis much more often, with a perhaps much wider scope.

 Cozo runs (almost) everywhere

Cozo runs (almost) everywhere

Version 0.1 of Cozo can be used embedded from Python, NodeJS, Java, Rust
and C, in addition to running standalone as a web server. Immediately
after its release, many people asked about the feasibility of using Cozo
embedded on mobile devices.

There was one major obstacle to supporting mobile: Cozo 0.1 used RocksDB
as the storage engine, and compiling RocksDB for mobile devices is not
an easy task. We chose RocksDB because it could handle a huge amount of
concurrency and is very fast, but the concurrency part may not be
relevant for the mobile case: you almost always have only one process
concurrently accessing the database.

So we ripped apart the storage engine code, made a nice and minimal
interface out of it, and now Cozo supports swappable storage engines! At
the time of this writing, you can choose from the following:

	In-memory engine

	SQLite engine

	RocksDB engine

	Sled engine

	TiKV engine

They offer different trade-offs:

	The in-memory engine is perfect if you just want to use Cozo as a
computation engine. For us, it also made writing tests much easier.
The downside is that it doesn’t persist data, and it doesn’t support
much write concurrency.

	The SQLite engine uses a minimal amount of resources, is easy to
compile for almost all platforms including mobile, and is reasonably
fast for reads. SQLite markets itself as a file storage format, and
we took advantage of that by making SQLite the backup format for all
engines. In this way when you backup your database, you get a
single-file SQLite-backed Cozo database. You do not need to restore
the backup to look inside: the backup is a fully functional
database. As a backup format, it is also extremely space-efficient
after you gzip it. The downside is as expected: SQLite is not very
fast when it comes to writing and is effectively single-threaded when
write concurrency is involved. But as we have said, these are usually
not problems on mobile.

	The RocksDB engine is crazy fast for both reads and writes and can
handle an enormous amount of concurrency, while still being rather
conservative on resource usage. In particular, its storage on disk is
compressed, making its disk space requirements for live databases the
smallest among all persistent options.

	We included Sled as an engine just because we can. The only benefit
is that it is pure Rust, and we are not Rust fundamentalists. It is
not faster than SQLite for the usual workload that Cozo encounters
and uses way more disk space.

	The TiKV option is the slowest among all options (10x to 100x slower)
since data must come from the network. The benefit is that TiKV is a
distributed storage. We included it so that people may decide for
themselves if it offers value for them. By the way, 100x slower than
the other storage options may not be slow compared to the average
graph databases in the market.

As a result of the storage engine refactoring, Cozo now runs on a much
wider range of platforms, including iOS, Android, and web browsers (with
web assembly)! We have also expanded the officially supported languages
where you can use Cozo embedded: Swift and Golang. Even if your
platform/language combination is not supported, you can still use Cozo
with the client/server mode. Or you can try to compile Cozo from source
and interface it with your platform/language: let us know if you
encounter problems, and we will help!

 On performance

On performance

Commercial databases like to do publicity stunts by publishing
“performance comparisons” of competing databases, with the results
invariably favouring their products. We are not going to do that
because, first, we do not want to attract the wrong kind of attention;
second and more importantly, such benchmarks don’t educate users beyond
the “trust us, we are the best” preaching. Instead, we want our
benchmarks to help the users answer the following questions:

	For my particular workload, what are the pros and cons of the
different setups that I can choose from?

	What is the performance I can expect from such a setup and is it
enough for me?

The setup

We will only be comparing Cozo to itself running on two different
machines:

	Mac Mini (2020)

	Linux Server (2017)

The Mac Mini runs MacOS 13.0.1, has Apple M1 CPUs with 4 performance
cores and 4 efficiency cores, 16GB of memory and a pretty fast NVMe SSD
storage. Its benchmarks would be typical of recent reasonably powerful
desktop and laptop machines. The Linux server runs Ubuntu 22.04.1 LTS,
has two Intel Xeon E5-2678v3 CPUs with a total of 24 physical cores,
64GB of memory and one of the slowest SSD storage I have ever seen. You
can expect similar performance if you (over)pay cloud providers. If you
have servers that have newer hardware, you can probably expect much
better performance.

We will be running Cozo embedded in
Rust [https://github.com/cozodb/cozo/blob/dev/cozo-core/benches/pokec.rs]
(in fact, we will take advantage of Rust’s built-in benchmark tools). As
it is embedded, we will use different numbers of concurrent threads to
run Cozo to see how a particular task scales with the number of
processors. Embedding Cozo in Rust is the fastest way to run Cozo and if
your use case involves embedding in another language such as Python,
there will be overheads due to Python itself. Still, if for similar
tasks as recorded here you experience orders of magnitude worse
performance, please let us know since it could be an environment-related
bug.

It seems graph databases like to use the Slovenian social network
Pokec [https://snap.stanford.edu/data/soc-pokec.html] for benchmarks
(see
here [https://github.com/memgraph/memgraph/tree/master/tests/mgbench#books-datasets]
and
here [https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/]).
We will use three different sizes for subsets of the data:

	“Tiny”: 10,000 vertices, 121,716 edges

	“Small”: 100,000 vertices, 1,768,515 edges

	“Medium”: 1,632,803 vertices, 30,622,564 edges, this is the full
dataset

Note that this is the same subsets as done
here [https://github.com/memgraph/memgraph/tree/master/tests/mgbench#pokec],
except their “small” is our “tiny”, their “medium” is our “small”, and
their “large” is our “medium”. We feel it to be rather presumptuous in
this age to call a dataset with just over 30 million edges “large”. When
will we do a benchmark for a truly webscale
dataset [https://www.tigergraph.com/benchmark/]? When we have more
time and a deeper pocket, maybe! Anyway, the “medium” size is probably
large enough for most purposes.

The schema for the data is the following, written in CozoScript:

{:create user {uid: Int => cmpl_pct: Int, gender: String?, age: Int?}}
{:create friends {fr: Int, to: Int}}
{:create friends.rev {to: Int, fr: Int}}

If you don’t read CozoScript yet: the relation user has an integer
primary key and three non-keys representing the vertices, the relation
friends has a composite (Int, Int) primary key representing the
edges, and the relation friends.rev acts as an index for the edges
in the reverse direction (in Cozo, everything is very explicit).

We will be comparing Cozo running with three different storage engines:

	In-memory engine

	SQLite engine

	RocksDB engine

All queries are run with snapshot isolations in effect: when mixing
reads and writes, reads will only see a snapshot of data valid at the
start of the transaction, and when writes conflict with each other, at
least one of them will fail to commit, in which case we will manually
retry the query. This is the only consistency level Cozo currently
supports: there is no way to opt for a more lax consistency model.

All mutations sent to the backend engine complete only when the
underlying storage engine transactions complete: there is no “fire and
forget” involved to give the user a false impression of high
performance.

Finally, note that we only benchmark the out-of-box experience of Cozo.
In the case of the RocksDB engine, there are lots of knobs you can turn
to make it much more performant for certain workloads (the easiest knob
is to beg it to use more memory, which helps when dealing with large
datasets), but we expect most users not to be experts in such
optimizations.

You can download the complete result of the benchmarks as a spreadsheet
here
to do your own analysis.

Loading data

Batch import

The first question we are interested in is how long it takes to load our
datasets into the database: do we need to wait for days? Our approach is
to parse data from a text file and insert them into the database in
batches of 300, single-threaded.

For the tiny dataset, the results are:

	Platform

	Backend

	Time taken (seconds)

	Mac Mini

	Mem

	0.265788

	Mac Mini

	RocksDB

	0.686022

	Mac Mini

	SQLite

	6.383260

	Server

	Mem

	0.494136

	Server

	RocksDB

	1.285214

	Server

	SQLite

	27.971535

Here is for the small dataset:

	Platform

	Backend

	Time taken (seconds)

	Mac Mini

	Mem

	5.429186

	Mac Mini

	RocksDB

	11.752198

	Mac Mini

	SQLite

	146.848621

	Server

	Mem

	8.741262

	Server

	RocksDB

	19.261249

	Server

	SQLite

	432.705856

And for the medium dataset:

	Platform

	Backend

	Time taken (seconds)

	Mac Mini

	Mem

	155.894422

	Mac Mini

	RocksDB

	212.731813

	Server

	Mem

	219.956052

	Server

	RocksDB

	348.638331

As you can see we didn’t even test for SQLite’s performance using the
medium dataset, as we grew tired of waiting. If the trend continues,
import with SQLite backend would take at least 45 minutes on Mac Mini,
and more than 2 hours on the Linux server. SQLite’s performance looks
really bad here, but we used to import a similar amount of data into
another graph database and it took us half a day. And even if you
insist on using the SQLite backend, there is a much faster way to import
data: keep reading.

For the RocksDB backend, everything can be done within a few minutes,
which is more than reasonable for tens of millions of rows.

We can compare performance across the board by considering raw rows per
second in imports, in which an edge counts as two raw rows since it
must appear in two relations:

[image: Batch import]
Here RocksDB performs well, especially for scaling: the decrease in raw
rows per second due to larger datasets is very small. And it is always
within a factor of three for the mem backend which does not persist data
at all.

Some of you may say that this is not fair for the SQLite backend, since
with some additional tricks and more clever batching, you can get higher
numbers for SQLite. Well, we are testing for simple-minded out-of-box
performance, and the fact is that with
tuning [https://github.com/cozodb/cozo#tuning-the-rocksdb-backend-for-cozo],
the RocksDB performance can be increased even more drastically.

How much memory does the database use during the import process? We will
show the peak memory usage as reported by the system:

[image: Batch import mem]
The benchmark infrastructure takes about 50MB of memory even if it does
nothing. So the SQLite backend always uses a negligible amount of extra
memory. RocksDB on the other hand will use memory to speed things up. As
we have said before we didn’t collect data for importing the medium
dataset into the SQLite backend.

The data for the mem backend is shown below separately:

[image: Batch import mem for mem]
This measures the size of the whole dataset as the mem backend can only
store data in memory. As we can see Apple’s OS somehow uses memory more
efficiently. For almost everything we do in this benchmark, the memory
usage of the mem backend is very similar to this, so we will not show
the memory usage of the mem backend before. If you are interested
nonetheless, you can look at the raw data in the
spreadsheet.

Backup

In Cozo we can backup the database to an SQLite-based database. How fast
is the backup?

[image: Backup]
On a Mac Mini, this is around one million raw rows per second for all
backends, which should be fast enough for most purposes. On the Linux
server, the bad quality of the SSD shows, but it is still quite fast. By
the way, if you have lots of data and you want to use the SQLite
backend, you can batch import the data into the RocksDB or mem backend,
and then back up the database. The backup file is a working
SQLite-backed database, and the whole process is a lot faster than
importing into an SQLite-backed database directly.

Memory usage:

[image: Backup memory]
Not much surprise here. As we said before around 50MB is used by the
benchmark infrastructure, so take that into account.

Restoring from backup

How fast is restoring from a backup?

[image: Restore]
This is the only benchmark where RocksDB performs the worst, with 400K
raw rows per second. Restoring into the SQLite backend is fast, but in
fact, you can be faster still: just copy the backup file over (or use it
directly if you don’t intend to write any data)!

Memory usage:

[image: Restore memory]
No surprise.

Transactional queries (OLTP)

Online Transaction Processing (OLTP) queries are simple reads or writes
queries that are expected to finish quickly, and you are expected to
deal with lots of them.

Point read

This is the simplest kind of query you can imagine: given an ID, it just
reads the corresponding row and gives it to you:

?[cmpl_pct, gender, age] := *user{uid: $id, cmpl_pct, gender, age}

The performance metric we are interested in is the queries per second
(QPS):

[image: Single vertex read QPS]
The effect of data size on such queries is small, and in general, adding
more cores helps almost linearly, though in the case of Mac Mini, only
the performance cores help, the efficient cores are pretty useless and
can get in the way. In general, you can expect at least around 100K QPS
regardless of data size on all setups when you fully utilize your
resources.

For memory usage:

[image: Single vertex read mem]
RocksDB only starts using memory with the medium dataset. In all other
cases, memory usage is minimal.

Point write

This is the simplest write query: it just creates a new vertex:

?[uid, cmpl_pct, gender, age] <- [[$id, 0, null, null]] :put user {uid => cmpl_pct, gender, age}

For this query, we are only going to show multi-thread performances for
RocksDB, since writing to the other backends are protected by a big
lock, so they are effectively still single-threaded:

[image: Single vertex write QPS]
RocksDB shines here as you can expect more than about 100K QPS for both
setups. Using more than the number of performance cores on the Mac Mini
decreases performance quite a bit, so avoid that if you can. But you
can’t see the SQLite bars, can you? Let’s use logarithmic scale instead:

[image: Single vertex write QPS zoom]
Whereas RocksDB easily manages more than 100K QPS, SQLite struggles to
reach even 100 QPS on the server with the slow SSD. That is more than
1000 times slower! It is so slow since each request translates into an
SQLite write transaction, and SQLite writes transactions are known to be
super expensive. These separate transactions are unavoidable here
because that’s the rule for the game: lots of independent, potentially
conflicting writes to the database. The moral of the story is to stay
away from the SQLite backend if you expect lots of independent writes.

Memory usage?

[image: Single vertex write mem]
Completely reasonable, I’d say. Even for medium datasets, RocksDB keeps
memory usage under 500MB.

Point update

This query updates a field for a given row:

?[uid, cmpl_pct, age, gender] := uid = $id, *user{uid, age, gender}, cmpl_pct = $n
:put user {uid => cmpl_pct, age, gender}

The performance:

[image: Single vertex update QPS]
It is slower than point writes, but within a factor of two. You can
still easily manage more than 50K QPS for RocksDB. Memory usage is
almost the same as the point write case:

[image: Single vertex update mem]

Mixed queries?

Of course in realistic situations, you would expect read, write and
update to occur concurrently. We won’t show the details here, but the
conclusion is that in such cases, the RocksDB backend doesn’t care if
the queries are reads, writes or updates, whereas any amount of writes
kills SQLite. If you want the details, you can find them in the
spreadsheet.

If SQLite performs so badly at writes, why include it at all? Well, its
performance is still acceptable if you are using it to build a desktop
or mobile application where writes are batched, and with the SQLite
engine, the database does not use more than the absolute minimal amount
of memory.

Analytical queries (OLAP)

Online analytical processing (OLAP) queries are queries which may touch
lots of rows in the database, do complex processing on them, and may
return a large number of rows. All graph queries should fall into this
category.

For OLAP queries, we are more interested in latency: how long does a
query take before it returns (on average)?

Friends of friends

The classical graph traversal query is the “friends of friends” query:
finding out who the friends of friends of a particular person are. For
such queries, the intermediate results and the return sets must be
stored somewhere (usually in memory). For these queries, we will only
show results for the “medium” dataset: 1.6 million vertices and 32
million edges. The same query for the smaller datasets complete much
faster: refer to the raw numbers if you are interested.

We start by following the “friends” relation twice—a “2 hops” query:

?[to] := *friends{fr: $id, to: a}, *friends{fr: a, to}

On average, this will return hundreds of rows.

[image: Friends 2 latency]
We see that the RocksDB backend performs very well, and if the storage
is fast enough, it is even faster than the mem backend. The SQLite
backend also performs quite well competitively. Having more threads
harms latency, but not much.

For memory usage: [image: Friends 2 mem]

As usual, the SQLite backend doesn’t use more than the absolute minimal
amount of memory, unless you have many concurrent threads. The memory
usage of the RocksDB backend is also pretty small.

Let’s now go up one hop to find out friends’ friends’ friends:

l1[to] := *friends{fr: $id, to}
l2[to] := l1[fr], *friends{fr, to}
?[to] := l2[fr], *friends{fr, to}

The variance of the number of returned rows is now very high: on average
thousands of rows will be returned, and if you start with some
particular nodes, you get tens of thousands of rows. The latency is as
follows:

[image: Friends 3 latency]
The trend is similar to the 2 hops case, except that the latency is
about twenty times as long, roughly proportional to the number of
returned rows.

For memory usage:

[image: Friends 3 mem]
Because the database must keep the return set in memory, in all cases
the memory usage increases. But it still manages with under 1GB of
memory, even with 24 concurrent threads running on the server.

Now let’s go to the extreme, by considering the 4 hops query:

l1[to] := *friends{fr: $id, to}
l2[to] := l1[fr], *friends{fr, to}
l3[to] := l2[fr], *friends{fr, to}
?[to] := l3[fr], *friends{fr, to}

The number of return rows now varies wildly: from tens of thousands of
rows if you start with someone who is solitary, or more than half of the
whole dataset (more than 600K rows) if you start with someone popular!

[image: Friends 4 latency]
I’d say that for return sets this big, the average latency of a few
seconds (or even less than a second) is excellent.

Peak memory usage just reflects the size of the returned sets:

[image: Friends 4 mem]
We won’t go beyond four hops but will note instead that if you go up to
six hops, by the “six degrees of separation”, you will return the
majority of nodes in almost all cases. Actually, in our experiments,
this already happens with a high probability for five hops.

Aggregations

Aggregations present a different challenge to the database: here the
amount of data to keep in memory is not much (in the case of counting,
just a single counter), but the database must scan every row of a
relation to return the result. For these queries, we will again only
show results for the “medium” dataset: 1.6 million rows for the relation
in question.

First, we will group users by their age and return the counts for each
age group:

?[age, count(uid)] := *user{uid, age}

[image: Aggregation group latency]
This tests the single-core CPU performance and disk read performance.
Around 1 second (within a factor of two) to scan the whole table in all
cases.

The memory usage is minimal as the return set is small:

[image: Aggregation group mem]
Now let’s add a filter to the aggregation:

?[age, count(age)] := *user{age}, age ~ 0 >= 18

This adds in a bit of processing time, but in terms of the order of
magnitude the numbers are similar to before: [image: Aggregation filter latency]

The memory usage is almost identical:

[image: Aggregation filter mem]
The results are similar if we compute several aggregations in tandem:

?[min(uid), max(uid), mean(uid)] := *user{uid, age}

The latency: [image: Aggregation stats latency]

and the memory usage: [image: Aggregation stats mem]

Pagerank

Finally let’s see how one of our canned algorithms performs: the
Pagerank algorithm with query

?[] <~ PageRank(*friends[])

This time we will show results for different dataset sizes. First for
the tiny dataset (10K vertices, 122K edges):

[image: Pagerank tiny latency]
Completes in the blink of an eye. Memory usage:

[image: Pagerank tiny mem]
Not much, since the dataset is truly tiny.

Now for the small dataset (100K vertices, 1.7M edges):

[image: Pagerank small latency]
About one second within a factor of two. Memory usage:

[image: Pagerank small mem]
This is the amount of memory used to store the graph in the main memory,
which is less than the size of the total graph on disk.

Now for the full dataset (1.6M vertices, 32M edges):

[image: Pagerank medium latency]
About half a minute across all setups. I’d argue that this is as fast as
any implementation could go. Memory usage:

[image: Pagerank medium mem]
1GB memory for such a workload is more than reasonable.

Conclusion

We hope that you are convinced that Cozo is an extremely performant
database that excels on minimal resources. As it can run (almost)
everywhere, please try it for your use case, and send us feedback so
that we can improve Cozo further!

 Time travel in a database: a Cozo story

Time travel in a database: a Cozo story

You have built a social network.
The only thing your users can do on the network
is to update their “mood”.
For example, user “joe” may be “moody” yesterday,
and “happy” today.
How is this reflected in the database?
In CozoDB,
this can be stored in the following relation:

:create status {uid: String => mood: String}

The equivalent SQL for Postgres is

create table status (
 uid text primary key,
 mood text not null
)

Your home page is very simple:
it is a gigantic page containing the moods of all the users all at once.
To generate it, you run the query:

?[uid, mood] := *status{uid, mood}

select uid, mood from status

And when users want to update their status, you run:

?[uid, mood] <- $input
:put status {uid => mood}

update status
set mood = $1
where uid = $2

Simple enough.
Now scientists come to you and want to buy your data for their study
of the fluctuation of moods during the pandemic.
Of course, you know that their real motive is nefarious,
so you promptly show them the door.
And then start banging your head against the door.
Why have you thrown away the history, the most valuable part
of your data? WHY?

So you borrow a time machine from a future you and travel back in time
to warn the former you.
“It’s simple to fix”, the former you says:

:create status {uid: String, ts default now() => mood: String}

create table status (
 uid text not null,
 ts timestamptz not null default now(),
 mood text not null,
 primary key (uid, ts)
)

Of course, now there is no way users can delete their accounts anymore,
all they can do is send you more and more updates. Very useful feature!

Now, to generate your homepage:

?[uid, mood] := *status{uid, mood, ts}, ts == now()

select uid, mood from status
where ts = now()

Disaster!
The homepage remains forever blank,
no matter what the users do!

The problem is that when you generate your homepage,
you can only collect data that were inserted in the past.
And for past data, the condition ts == now() is never true!

After a lot of fumbling, you find that the following query works:

candidates[uid, max(ts)] := *status{uid, ts}
?[uid, mood] := candidates[uid, ts], *status{uid, ts, mood}

with candidates(uid, ts) as (
 select uid, max(ts) from status
 group by uid
)
select status.uid, status.mood from status
inner join candidates on status.uid = candidates.uid and status.ts = candidates.ts

You first find out what are the timestamps for the latest status for each user,
and then use the user ID together with the timestamps to collect the moods.

Now travelling back to a particular time in the past is easy:

candidates[uid, max(ts)] := *status{uid, ts}, ts < $date_ts
?[uid, mood] := candidates[uid, ts], *status{uid, ts, mood}

with candidates(uid, ts) as (
 select uid, max(ts) from status
 where ts < $1
 group by uid
)
select status.uid, status.mood from status
inner join candidates on status.uid = candidates.uid and status.ts = candidates.ts

The cost of time travel

Your social network becomes a runaway success,
and the scientists are happy too!
As time goes on, however, you notice performance problems,
and it gets worse each day.

What’s happening?
After all, your network caters only for the students on a certain campus,
and even if everyone signed up,
there would only be 10,000 users at most.
After digging into your data, you notice that some (most?) of your users are hyperactive
and update their mood every five minutes during their waking hour.
Even though you have only run your service for three months,
some of them have already accumulated over 10,000 mood updates!

So for the front-page generating query:

candidates[uid, max(ts)] := *status{uid, ts}
?[uid, mood] := candidates[uid, ts], *status{uid, ts, mood}

with candidates(uid, ts) as (
 select uid, max(ts) from status
 group by uid
)
select status.uid, status.mood from status
inner join candidates on status.uid = candidates.uid and status.ts = candidates.ts

you are doing a full scan of your data to get your results.
For 10,000 users and 1,000 updates each
(we use the mean number of mood updates, so it’s 1,000 instead of 10,000),
that’s 10 million rows.
And next year it will become more than one billion rows,
since time ticks and you are thinking of expanding your service to other communities.

Dreamy indices

Your investor suggests the “enterprisey” thing:
pre-computing the front page and updating it periodically instead of calculating it in real-time.
Being a hacker with a big ego, you detest all things “enterprisey” and ask yourself: “is there anything better that can be done?” Your friend, who works in finance, suggests time series databases. “It can handle data from the stock market quite well, so surely it is good enough for your data!” “Just index your data by the timestamp!” Well, unlike stock market indices, your data is sparse: it is not collected at regular intervals for all users in unison.
Are you going to materialize these implicit rows so that every time a user updates her mood,
everyone else also gets an automatic update?
Your cloud provider is very welcoming of this idea and urges you to sign up for their proprietary time series database. Your investor is also kind of supportive since it would make you an instant “big data” company,
but worries about whether you can secure additional funding in time to cover the costs.
You, ever calm, make some back-of-envelop estimates and give up the idea.

Your investor still wants to talk to you over the phone, but you become very annoyed and go to sleep, clouded in anxiety.

In your dream, you come to a dark, Harry-Potteresque library, with dusty shelves neatly lined up, and on the shelves were … files for the mood of your users at different times, meticulously arranged. The tree backing your database has taken physical form!
You walk mechanically to the first shelf, like a robot, and start to collect the mood of every user at midnight some days back.

“Aaron, 2022-09-01, 15:31, too early.”

“Aaron, 2022-09-01, 15:33, still too early.”

…

“Aaron, 2022-12-24, 23:59, still too early.”

“Aaron, 2022-12-25, 00:34, well it’s past the time we want, so the previous item contains the mood.” (The mood is “festive”, by the way.)

“Aaron, 2022-12-25, 00:42, we don’t need this anymore.”

“Aaron, 2022-12-25, 00:47, we don’t need this anymore.”

…

“Aaron, 2022-12-27, 12:31, why are we still looking at Aaron, by the way?”

…

“Bean, 2022-11-27, …”

Two things irked you. First, you are going through the data in the wrong direction, so after you have gone past the expected date, you have to go back and look at the previous record.
This is especially annoying since some users signed up only today,
and the previous record is someone else’s.
Second, you are walking a tree, so why can’t you jump to the next user when you know you are done with a user?

As if triggered by these thoughts, the books pour out of the shelves to form a tornado, swirl all over the library, and after a while return to the shelves.
“I have to do this all over again,” you gruntle and walk to the first shelf.
But something has changed: you can now directly jump to the beginning,
and the records are in a different order, ascending by the user, as before, but descending by the timestamp:

“Aaron, 2022-12-27, 03:38, too late, let’s jump to the book past Aaron, 2022-12-25, 00:00.”

“Aaron, 2022-12-24, 23:59. Now this book contains the required mood for Aaron.” “Let’s now jump to the book past Aaron at the BIG BANG.”

“Bean, 2022-12-24, 23:11, this is already the correct book for Bean, lucky! Now let’s go past Bean at the BIG BANG.” “I wonder what happened to Mr Bean since Christmas Eve?”

…

Suddenly, you wake up. You rush to your computer and write down what you saw, in code.

Back to reality

Eventually, your social network takes over the world and changes it fundamentally,
with the simple schema in CozoScript:

:create status {uid: String, ts: Validity default 'ASSERT' => mood: String}

the query for the present:

?[uid, mood] := *status{uid, mood @ 'NOW'}

and the query for historical moments:

?[uid, mood] := *status{uid, mood @ '2019-12-31T23:59:59Z'}

Obviously, there are no longer any SQL translations.

The story ends here. It is the story of the new time travel feature in Cozo v0.4.
We have also added a part in the tutorial giving you hands-on experience.

But what about performance?

Real databases care about performance deeply, and at Cozo we do.
So let’s do some performance tests, with the same Mac Mini as before: it runs MacOS 13.0.1, has Apple M1 CPUs with 4 performance
cores and 4 efficiency cores, 16GB of memory and a pretty fast NVMe SSD storage.
We only test against the RocksDB backend for simplicity.

We generated many relations, all of which contain data for 10,000 users.
The ‘Plain’ relation stores no history at all.
The ‘Naive’ relations store and query history using the naive approach we described in the story.
We generated different versions of the naive relations, containing different numbers of
mood updates per user.
Finally, the ‘Hopping’ relations store and query history using the dream approach we described earlier.

The historical timestamp for the queries is chosen randomly and the results are averaged over many runs.

First, we want to know how history storage affects point query throughput, measured in queries per second (QPS):

	Type

	# updates per user

	QPS

	Performance percentage

	Plain

	1

	143956

	100.00%

	Naive

	1

	106182

	73.76%

	Naive

	10

	92335

	64.14%

	Naive

	100

	42665

	29.64%

	Naive

	1000

	7154

	4.97%

	Hopping

	1

	125913

	87.47%

	Hopping

	10

	124959

	86.80%

	Hopping

	100

	100947

	70.12%

	Hopping

	1000

	102193

	70.99%

As we can see, for 1000 updates per user, the naive approach has a 20x reduction in
throughput compared to the no history approach. The hopping approach, on the other
hand, maintains more than 70% of the original performance.

To be fair, for the simplest kind of point query where you know the complete key and
the timestamp and want the result for only a single user, there is a better way
to write the query so that the naive approach can achieve a similar performance
to the hopping one. We deliberately wrote our query in a way to avoid
this optimization, since this optimization may not always be possible, depending on the query.

Next, let’s look at aggregation results where we must go through all users.
Now we measure latency instead of throughput:

	Type

	# updates per user

	Latency (ms)

	Slowdown ratio

	Plain

	1

	2.38

	1.00

	Naive

	1

	8.90

	3.74

	Naive

	10

	55.52

	23.35

	Naive

	100

	541.01

	227.52

	Naive

	1000

	5391.75

	2267.53

	Hopping

	1

	9.60

	4.04

	Hopping

	10

	9.99

	4.20

	Hopping

	100

	39.34

	16.55

	Hopping

	1000

	31.41

	13.21

Now the naive approach scales badly. For a query that takes only 2ms in
a plain relation, it takes more than 5 seconds in a relation with 1000 historical
facts per user. The hopping approach, on the other hand, keeps the time complexity under control.
Notice that it performs better in the relation with 1000 historical facts per user
than in the relation with only 100. This is not a random fluctuation: it occurs
consistently no matter how we test it. We guess that the RocksDB backend
does something different when a certain threshold is passed.

Nonetheless, it is important to note that there is at least a 3x slowdown no matter how you store the history,
even if you only have one historical fact per user. This is the minimal cost of time travel.
And this is why Cozo does not automatically keep history for every relation
regardless of whether you need it: our philosophy is “zero-cost and zero-mental-overhead abstraction”.

Before we end, let’s remark that some people maintain that data is naturally immutable
and hence should always be stored immutably. We do not take this view.
Use immutability and time travel only when you really need it.
Are we simply collections of data in an immutable database,
operated by Laplace’s daemon, perhaps?
I hope not, and modern physics certainly says no,
no matter how you look at it: whether it is the collapse of the wave function
or the dance at the edge of chaos. So immutability is an illusion, or at best
a platonic fantasy that we created so that we can make better sense of the world.
That’s OK, since we can only understand the world by projecting our models onto the world.
Just don’t become the slaves of our own creation and let it slow us down.

 Cozo 0.5: the versatile embeddable graph database with Datalog is half-way 1.0

Cozo 0.5: the versatile embeddable graph database with Datalog is half-way 1.0

It’s been a quarter of a year since Cozo’s initial release and today we are glad to present to you the “half-way 1.0” version.
This marks the completion of all the features we envisaged for Cozo when we first started but weren’t present in the initial release:

	User-defined fixed rules (added in v0.5)

	Callbacks for mutation (added in v0.5)

	Multi-statement transaction (added in v0.5)

	Indices (added in v0.5)

	Imperative mini-language (added in v0.5)

	Time-travelling (added in v0.4)

	Swappable backend (added in v0.2)

In addition, v0.5 brings major behind-the-scene changes that has big performance benefits:

	The semi-naive algorithm for executing queries is now executed in parallel for each Horn-clause (now it is even more advisable to split your queries into smaller pieces–better readability and performance!)

	The evaluation of expressions is no longer interpreted but instead through stack-based bytecodes (a few percent improvements for filter-heavy queries–the improvement mainly comes from the avoidance of memory allocations)

From now on, until version 1.0, development will “shift-gear” to focus on:

	stability

	performance

	interoperability with other software, e.g.:

	networkx [https://networkx.org/] for pythonic in-memory graph analytics

	PyG [https://www.pyg.org/] in particular and pytorch [https://pytorch.org/] in general for deep learning on graphs

	plotly [https://plotly.com/graphing-libraries/] and dash [https://dash.plotly.com/] for plotting and dashboards

If you find Cozo to be useful in your work, please send us feedbacks so that we can make Cozo better still!

 Experience CozoDB: The Hybrid Relational-Graph-Vector Database - The Hippocampus for LLMs

Experience CozoDB: The Hybrid Relational-Graph-Vector Database - The Hippocampus for LLMs

After a long repose, today we are very excited to bring you the release of CozoDB v0.6!

Introduction

The singular feature addition in this release is the introduction of vector search within Datalog.

For those who are unfamiliar with the concept: vector search refers to searching through large collections of usually high-dimensional numeric vectors, with the vectors representing data points in a metric space. Vector search algorithms find vectors that are closest to a given query vector, based on some distance metric. This is useful for tasks like recommendation systems, duplicate detection, and clustering similar data points, and has recently become an extremely hot topic since large language models (LLMs) such as ChatGPT can make use of it to partially overcome their inability to make use of long context.

Highlights

	You can now create HNSW (hierarchical navigable small world) indices on relations containing vectors.

	You can create multiple HNSW indices for the same relation by specifying filters dictating which rows should be indexed, or which vector(s) should be indexed for each row if the row contains multiple vectors.

	The vector search functionality is integrated within Datalog, meaning that you can use vectors (either explicitly given or coming from another relation) as pivots to perform unification into the indexed relations (roughly equivalent to table joins in SQL).

	Unification with vector search is semantically no different from regular unification, meaning that you can even use vector search in recursive Datalog, enabling extremely complex query logic.

	The HNSW index is no more than a hierarchy of proximity graphs. As an open, competent graph database, CozoDB exposes these graphs to the end user to be used as regular graphs in your query, so that all the usual techniques for dealing with them can now be applied, especially: community detection and other classical whole-graph algorithms.

	As with all mutations in CozoDB, the index is protected from corruption in the face of concurrent writes by using Multi-Version Concurrency Control (MVCC), and you can use multi-statement transactions for complex workflows.

	The index resides on disk as a regular relation (unless you use the purely in-memory storage option, of course). During querying, close to the absolute minimum amount of memory is used, and memory is freed as soon as the processing is done (thanks to Rust’s RAII), so it can run on memory-constrained systems.

	The HNSW functionality is available for CozoDB on all platforms: in the server as a standalone service, in your Python, NodeJS, or Clojure programs om embedded or client mode, on your phone in embedded mode, even in the browser with the WASM backend [https://www.cozodb.org/wasm-demo/].

	HNSW vector search in CozoDB is performant: we have optimized the index to the point where basic vector operations themselves have become a limiting factor (along with memcpy), and we are constantly finding ways to improve our new implementation of the HNSW algorithm further.

For a more detailed description, see here.

For those who have not heard of CozoDB before: CozoDB is a general-purpose, transactional, relational database that uses Datalog for query, is embeddable but can also handle huge amounts of data and concurrency, and focuses on graph data and algorithms. It even supports time travel (timestamped assertions and retractions of facts that can be used for point-in-time query)! Follow the Tutorial if you want to learn CozoDB. The source code for CozoDB is on GitHub [https://github.com/cozodb/cozo/].

Comparisons to other systems

	PostgreSQL with pgVector: I am a fan of the PostgreSQL project and always look up to it as a role model. The problem is that the pgVector extension suffers from low recall and is not general enough for many use cases; both these problems don’t exist in CozoDB’s HNSW index. And SQL itself is just not cut out for complex graph queries, which is the focus of CozoDB.

	hnswlib and faiss: Unlike many vector databases currently available, our HNSW index is not a wrapper around one of these two libraries but a new implementation written from scratch in Rust. This is necessary since we want the index to be disk-based and support MVCC. These two options are mostly single-purpose libraries, whereas CozoDB is a general-purpose database system.

	commercial vector databases running in the Cloud: CozoDB is FOSS (MPL 2.0 license) and can run in embedded mode (standalone server mode is available if you need it). In terms of functionalities, these cloud databases support only simple queries, whereas in CozoDB they can be as complex as you like (if you really want it, there is an imperative mini-language to write the CozoDB queries). On the other hand, if your requirements are simple, these systems are probably easier to get started with.

The remainder of this note comprises two parts. The first part will, by using a running example, show how the need for vector search arises in a particular application, and as a result of this new feature, how existing systems can become much more powerful. The second part will include some of my personal, somewhat crazy musings and speculations for further development of AI with reference to CozoDB.

The emergence of vector search in CozoDB

This is not meant for a comprehensive introduction. We will not stop to explain the syntax: see the Tutorial instead.

From relational thinking to graph thinking

First, we will show how CozoDB can deal with traditional relational and graph data.

Let’s start with a humble sales dataset. CozoDB is first and foremost a relational database, as the following schema for creating the dataset relations show. First, the customers:

:create customer {id => name, address}

Here id is the key for the relation. In a real dataset, there will be many more fields, but here we will just have the names and addresses for simplicity. Also, we did not specify any type constraints for the fields, again for simplicity reasons. Next, the products:

:create product {id => name, description, price}

Finally, the sales data itself:

:create purchase {id => customer_id, product_id, quantity, datetime}

The mental picture we should have for these relations is:

[image: relational thinking]
Let’s assume that these relations have already been filled with data. Now we can start our “business analytics”. First, the most popular products:

?[name, sum(quantity)] := *purchase{product_id, quantity},
 *product{id: product_id, name}

:order -sum(quantity)
:limit 10

Here, the Datalog query joins the purchase and product relations through their ID, and then the quantities purchased are sum-aggregated, grouped by product names. Datalog queries are easier to read than the equivalent SQL, once you get used to it.

Then the shopaholics:

?[name, sum(amount)] :=
 *purchase{customer_id: c_id, product_id: p_id, quantity},
 *customer{id: c_id, name},
 *product{id: p_id, price},
 amount = price * quantity

:order -sum(amount)
:limit 10

These “insights” are bread-and-butter relational thinking, useful but quite shallow. In graph thinking, instead of mentally picturing customers and products as rows in tables, we picture them as dots on a canvas, with purchases as links between them. In CozoDB, graph modeling is done implicitly: the purchase relation already acts as the edges. The mental picture is now:

[image: graph thinking]
Graphs are all about how things are connected to each other, and among themselves. Here, products are connected to other products, mediated by purchases. We can materialize this mediated graph:

?[prod_1, prod_2, count_unique(customer_id)] :=
 *purchase{customer_id, product_id: prod_1},
 *purchase{customer_id, product_id: prod_2}

:create co_purchase {prod_1, prod_2 => weight: count_unique(customer_id)}

Here, the edge weights of the co_purchase graph are the number of distinct customers that have bought both of the products. We also directly saved the result in a new stored relation, for easier manipulation later (creating relations in Cozo is very cheap).

With this graph at hand, the famous diaper-beer correlation from the big-data era is then simple to see: if you start with a diaper product, the product connected to it with the largest weight is the most correlated product to it according to the data at hand. Maybe even more interesting (and difficult to do in a traditional relational database) is the centrality of products; here, we can simply use the PageRank [https://en.wikipedia.org/wiki/PageRank] algorithm:

?[product, pagerank] <~ PageRank(*co_purchase[])

:order -pagerank
:limit 10

If you run a supermarket, it may be beneficial to put the most central product in the most prominent display, as this is likely to drive the most sales of other products (as suggested by the data, but whether this really works must be tested).

Augmenting graphs with knowledge and ontologies

You can try to derive more graphs from the sales dataset and experiment with different graph algorithms running on them, for example, using community detection to find groups of customers with a common theme. But there is a limit to what can be achieved. For example, the product “iPhone” and the product “Samsung phone” are not related in the dataset, though all of us can immediately see that they are both under the umbrella concept of smartphones. This latent relationship cannot be determined using e.g. correlation; in fact, sales of the two products are likely anti-correlated. But one would expect iPhone 15 and iPhone 11 to be correlated.

So, to derive more insights from the dataset, we need to augment it with knowledge graphs or ontologies (the distinction between the two need not concern us here). In concrete terms, someone would have already compiled a relation for us, for example:

:create relation{subject, verb, object}

With this, the iPhone–Android relationship may be discovered:

?[verb, concept] :=
 *relation{subject: "iPhone", verb, object},
 *relation{subject: "Samsung phone", verb, object}

The result should show that verb is matched to "is_a" and concept is matched to "smartphone". Replacing "Samsung phone" by "iPad" should result in the binding verb: "made_by" and concept: "Apple".

The mental picture is now:

[image: layered graphs]
Instead of a single-layer flat graph, we now have a layered graph, with the upper layers provided by the externally-provided knowledge graphs. In the picture we have drawn many layers, as the real power of this approach shows when we have many knowledge graphs from diverse sources, and insights may be derived by comparing and contrasting. The values of multiple knowledge graphs multiply when they are brought together instead of simple addition. In our running sales example, now using graph queries and algorithms, you can investigate competitors, complementary products, industry trends, sales patterns across different smartphone brands, customer segment-specific popularity, gaps and opportunities in the product catalogue, for example, which are all out of reach without the multi-layered approach.

LLMs provide implicit knowledge graphs

Okay, so knowledge graphs are cool, but why are they not more widely used? In fact, they are widely used, but only inside big corporations such as Google (rumors have it that Google runs the world’s largest knowledge graphs, which are at play whenever you search). The reason is that knowledge graphs are expensive to make and difficult to maintain and keep up to date, and combining different knowledge graphs, while powerful, requires a tedious translation process. You may already have expected this from our example above: even if we can hire a thousand graduate students to code the knowledge graph for us, who decided to code the verb as "is_a" instead of "is a"? What about capitalization? Disambiguation? It is a difficult and brittle process. In fact, all we care about are the relationships, but the formalities hold us back.

Fortunately for us non-Googlers, the rise and rise of LLMs such as GPTs have paved a new way. With the newest version of CozoDB, all you need to do is to provide embeddings for the product description. Embeddings are just vectors in a metric space, and if two vectors are “near” each other according to the metric, then they are semantically related. Below we show some vectors in a 2-D space:

[image: vectors]
So now the product relation is:

:create product {
 id
 =>
 name,
 description,
 price,
 name_vec: <F32; 1536>,
 description_vec: <F32; 1536>
}

To show our excitement, we have provided 1536-dimensional embeddings for both the name texts and description texts, and we also annotated the vector types to be specific. Next, we create a vector index:

::hnsw create product:semantic{
 fields: [name_vec, description_vec],
 dim: 1536,
 ef: 16,
 m: 32
}

This is an HNSW (hierarchical navigable small world) vector index, and ef and m are parameters that control the quality-performance trade-off of the index. Now when inserting rows for the product table, we use an embedding model (such as text-embedding-ada-002 provided by OpenAI) to compute embeddings for the texts and insert them together with the other fields. Now an iPhone and a Samsung phone are related even without a manually curated knowledge graph:

?[dist, name] :=
 *product{name: "iPhone", name_vec: v},
 ~product:semantic{name | query: v, bind_distance: dist, k: 10, ef: 50}

:order dist
:limit 10

This is a nearest-neighbor search in embedding space. The first result should be “iPhone” itself with a distance of zero, followed by the other smartphones according to their similarity with the iPhone.

What is the mental picture now? The HNSW algorithm is a pure-graph algorithm that builds a hierarchy of proximity graphs, with the base layer containing all the indexed nodes and the upper layers stochastically-selected nodes that comprise a renormalized [https://en.wikipedia.org/wiki/Renormalization#Renormalization_in_statistical_physics], zoomed-out picture of the proximity graph. Below is an example of a proximity graph in a 2-D space:

[image: a proximity graph]
In CozoDB, unlike in other databases, we expose the inner workings to the user whenever it makes sense. This is especially relevant in the case of HNSW indices. In the above example, since we already know that "iPhone" is in the index, we do not need to use vector search at all and can walk the proximity index directly to get its proximity neighbors (which are not the same as the nearest neighbors):

?[dist, name] :=
 *product:semantic{layer: 0, fr_name: "iPhone", to_name: name, dist}

:order dist
:limit 10

The power of this is that all the Datalog tricks and all the classical graph algorithms can be applied to the graph, and we are just walking the graph; there are no vector operations at all! As an illustration, we can try to find the “transitive closure” of the iPhone with clipped distance (using a community detection algorithm works much better, but here we want to show recursion):

iphone_related[name] :=
 *product:semantic{layer: 0, fr_name: "iPhone", to_name: name, dist},
 dist < 100
iphone_related[name] :=
 iphone_related[fr_name],
 *product:semantic{layer: 0, fr_name, to_name: name, dist},
 dist < 100
?[name] := iphone_related[name]

Now you will have all the iPhone-related products by walking only the (approximate) proximity graph with edges of distance smaller than 100.

Semantically, the HNSW search operation is no different from normal stored relation queries, so you can use them in recursions as well:

iphone_related[name] :=
 *product{name: "iPhone", name_vec: v},
 ~product:semantic{name | query: v, bind_distance: dist, k: 5, ef: 50}
iphone_related[name] :=
 iphone_related[other_name],
 *product{name: other_name, name_vec: v},
 ~product:semantic{name | query: v, bind_distance: dist, k: 5, ef: 50}
?[name] := iphone_related[name]

But this version will be slower than walking the index directly since now lots of vector operations are involved. It is most useful when we want to “jump” from one index to another: their proximity graphs are not connected, so you use vectors from each of them to make the connection.

This is rather cute, but how is it going to replace knowledge graphs? The proximity graph we have built is generic, making no distinction between an "is_a" relation and a "made_by" relation, for example.

There are many ways to solve this problem, which can be roughly divided into two classes.

In the first class, we use LLMs together with the proximity graph to build the knowledge graph automatically. For example, a properly-prompted LLM can look at "iPhone" and its neighbors and generate concepts and verbs as candidates for insertion into a knowledge graph, represented as a relation in CozoDB. The tags and verbs are then de-duped by using HNSW search in the embedding-enriched knowledge graph to prevent a situation where both "iPhone" and "iphone" are present, for example (it is recommended to let LLMs verify that its proposal is valid for important work). If you want to go down this route, better results are obtained if you already have an idea of what the verbs are in order to constrain the content generated by the LLMs.

The second class is even easier to implement: we just have to come up with a series of questions that we want to answer by consulting a knowledge graph, for example, “what is the manufacturer of this product”, “in a supermarket, how is this product catalogued”, etc., and we let the LLMs generate answers to these questions, with the product description given as context, and finally, we store the answers together with their embeddings in a dedicated HNSW index. Now the proximity graph for these answers constitutes the appropriate section of the required knowledge graph. You may need to wrap your head around a little bit when using this approach, but in fact, it works even better than the first as it is much more adaptable.

We hope that you have seen that CozoDB’s seamless mixture of relational, graph, and vector search capabilities offers unique advantages and opens up unexplored territories for exploring novel ideas and techniques in data management and analysis!

Toward the hippocampus for AI

We have seen that CozoDB becomes much more powerful with its support for vector embeddings and implicit proximity graphs. In fact, this empowerment cuts both ways, and the possibilities are limitless. The following sections are highly speculative and maybe controversial, and I would be glad if they could lead to useful discussions.

Knowledge management for AI

Many people use knowledge management tools such as Roam Research, Obsidian, and Notion, just to name a few. The key feature of these tools is the ability to create links between different pieces of text. I am extremely frustrated with the existing solutions because they do not support LaTeX well (I want them to display equations nicely, and I want painless authoring of LaTeX formulas and useful debugging information), so I wrote my own:

[image: my private knowledge management]
Naturally, CozoDB is at its heart. With the advent of LLMs and CozoDB’s inclusion of vector search capabilities, and with enough tweaks to my private knowledge management system, I find that explicit linking becomes increasingly unnecessary, as the connections can be derived automatically by the LLMs.

Then I began to have an eerie feeling that it is not me who is reading these notes anymore; it is the AI. And in fact, properly structured, the AI can utilize CozoDB better than me.

In the paper Generative Agents: Interactive Simulacra of Human Behavior [https://arxiv.org/abs/2304.03442], it is shown that an essential ingredient for generative agents is the ability to keep notes and to make effective use of them for chain-of-thought reasoning. In the paper, a linear array of memory cells is used, and we all know that our brain is not really like that. A proximity graph for memory storage, as implemented in CozoDB, seems a much better fit for a memory for AI.

In fact, even letting the LLM agent do random walks on the proximity graph can produce surprising (in a good sense) results, as this is really exploring a fuzzy associative memory, and the long-range links in the upper hierarchy can provide the occasional “leaps of imagination”.

The fractal von Neumann architecture

The current generation of LLMs runs on computers with the von Neumann architecture: a CPU that performs operations on data stored in memory, with data and instructions mixed in the same memory space.

Now if we consider individual LLMs themselves as CPUs (hence fractal), then their knowledge management tools such as CozoDB act as the memory. Here too, instructions (what the LLM must do, i.e., prompts) and data (contexts) are mixed together. CozoDB has many appealing properties to act as AI’s memory: a practical but important consideration is that the CPU had better control the memory exclusively; using it “on the cloud” doesn’t perform too well. In developing CozoDB, it was decided very early on that this database must scale, and scaling means not only scaling up but also scaling down. The original motivation is to provide knowledge graph support wherever needed. Now this ubiquity of CozoDB certainly paves the way for offline intelligent agents. Soft-erasure features in the sense of customizable timestamped facts and assertions also help the agent better organize its own thoughts.

Cutting-edge LLMs running on the phone are certainly possible and near. One of my favorite pastimes when new LLMs come out is to ask them to give pi to as many digits as they can (they may refuse, but with enough cajoling, they will eventually comply). The interesting thing is that they start giving wrong results after a few hundred digits (maybe even less), but not totally wrong: there are large segments of correct sequences, just out of order. So today’s LLMs are just totally wasteful in how they use their internalized memory: they remember lots of useless details. With time, and when trained with their own von Neumann memory, they will become more efficient in using their parameters, and then they won’t need to be so big.

Does this scale even further? Autonomous agents, each with their private memory, communicating in a public arena (CozoDB running in the Cloud, for example)? What will they do then?

The interpretation of artificial dreams

To form a true community of agents, we need real individuals, not shallow carbon-copies of the same collective subconscious. Today’s incarnation of GPTs is nothing more than a collective subconscious: different prompts will elicit different personalities and responses from them.

Private memory and individual fine-tuning of model weights according to private experience are of course required, but we need more than that. One hangover from the era of Big Data is the belief that all data must be preserved for later use. The reality is that we just get a bigger and bigger pile of rubbish that is harder and harder to make sense of. Humans don’t do this. When awake, humans remember and reason, but when dreaming, humans distill, discard, and connect higher concepts together. Random-walking LLMs on proximity graphs can do this, and the constraints are no longer measured in gigabytes but instead in minutes (hours) and joules (calories). AI also needs to rest, reflect, and sleep, after all.

Towards intelligence

In a sense, today’s AI is never awake. Waking people can answer three questions: Who am I? Where do I come from? Where am I going to? Often left unsaid is that the answers to these three questions must be examined (as in “the unexamined life is not worth living” [https://en.wikipedia.org/wiki/The_unexamined_life_is_not_worth_living]), and must not be recitations from a rulebook. This calls for a much deeper integration of the subconscious processing and memory.

So what is “examined”? Rote memorization certainly is not. A popular critique of LLMs as intelligent agents is that all they can do is continue the text, and what they can achieve can be, in principle, no more than what is already contained in the learned texts. This may be true if LLMs are trained with only supervised/unsupervised learning, but a crucial step in the production of systems such as ChatGPT is the final RLHF step. With reinforcement learning and enough experience, there is no reason to set any bounds on intelligence as dictated by the training material; otherwise, how did AlphaGo and friends beat humans? The later versions even have ZERO prior contexts for learning.

Intelligence must precede the ability to examine. I do think current best systems display signs of intelligence, but they are extremely weak. One manifestation is that they are totally shallow thinkers, and this is more fundamental than the fact that the transformer architecture makes internally making plans difficult (making plans can be done inside the memory, i.e., the database, which is what humans do as well). The reason, I believe, is that the RLHF procedure currently applied is rather primitive. Being primitive has benefits: as we know, intelligent lifeforms need to reside on the edge of chaos and order; any highly developed systems will need to be intricate and must be evolved, not made. And when in unfavorable environments, they can quickly spiral to death. But evolution they will need. Now they have the hippocampus installed, the next roadblock is updating weights on the phone. We will see how we can get there.

Let’s end this note with the following ancient maxim:

ΓΝΩΘΙ ΣΕΑΥΤΟΝ.

 Version 0.7: MinHash-LSH near-duplicate indexing, Full-text search (FTS) indexing, Json values and update

Version 0.7: MinHash-LSH near-duplicate indexing, Full-text search (FTS) indexing, Json values and update

Continuing with the empowerment of CozoDB by vector search, This version brings you a few more features!

MinHash-LSH indices

Let’s say you collect news articles from the Internet. There will be duplicates, but these are not exact duplicates. How do you deduplicate them? Simple. Let’s say your article is stored thus:

:create article{id: Int => content: String}

To find the duplicates, you create an LSH index on it:

::lsh create article:lsh {
 extractor: content,
 tokenizer: Simple,
 n_gram: 7,
 n_perm: 200,
 target_threshold: 0.7,
}

Now if you do this query:

?[id, content] := ~article:lsh {id, content | query: $q }

then articles with its content about 70% or more similar to the passed-in text in $q will be returned to you.

If you want, you can also mark the duplicates at insertion time. For this, use the following schema:

:create article{id: Int => content: String, dup_for: Int?}

Then at insertion time, use the query:

{
 ?[id, dup_for] := ~article:lsh {id, dup_for | query: $q, k: 1}
 :create _existing {id, dup_for}
}

%if _existing
 %then {
 ?[id, content, dup_for] := *_existing[eid, edup],
 id = $id,
 content = $content,
 dup_for = edup ~ eid
 :put article {id => content, dup_for}
 }
 %else {
 ?[id, content, dup_for] <- [[$id, $content, null]]
 :put article {id => content, dup_for}
 }
%end

For our own use-case, this achieves about 20x speedup compared to using the equivalent Python library. And we are no longer bound by RAM.

As with vector search, LSH-search integrates seamlessly with Datalog in CozoDB.

Full-text search

After finding the duplicates, what if I want all articles that mentions the word “iPhone”? Using vector search seems such an overkill and may not yield good results. So we have full-text search indices as well!

To apply the FTS index:

::fts create article:fts {
 extractor: content,
 tokenizer: Simple,
 filters: [Lowercase, Stemmer('english'), Stopwords('en')]
}

and it’s ready to be searched:

?[id, content, score] := ~article:fts {id, content | query: $q, bind_score: score }
:order -score

Passing 'iPhone' to $q will give you articles that explicitly mention the iPhone, 'iPhone iPad' will give you articles that mention both, and 'iPhone OR iPad' will give you articles that mention either.

For more information on FTS and LSH, refer to the proximity search chapter.

Json values and update

Now we will have AI commentators analyze and comment on the articles. We will use the following schema:

:create article{id: Int => content: String, dup_for: Int?, comments: Json default {}}

The Json type is newly available. Now let’s say our economics analyzer has produced a report for article 42, in the following Json:

{
 "economic_impact": "The economic impact of ChatGPT has been significant since its introduction. As an advanced language model, ChatGPT has revolutionized various industries and business sectors. It has enhanced customer support services by providing automated and intelligent responses, reducing the need for human intervention. This efficiency has resulted in cost savings for businesses while improving customer satisfaction. Moreover, ChatGPT has been utilized for market research, content generation, and data analysis, empowering organizations to make informed decisions quickly. Overall, ChatGPT has streamlined processes, increased productivity, and created new opportunities, thus positively impacting the economy by driving innovation and growth."
}

To merge this comment into the relation:

?[id, json] := id = $id, *article{id, json: old}, json = old ++ $new_report
:update article {id => json}

Note that with :update, we did not specify the dup_for field, and it will keep whatever its old value.

Next, our political analyzer AI weighs in:

{
 "political_impact": "The political impact of ChatGPT has been a subject of debate and scrutiny. On one hand, ChatGPT has the potential to democratize access to information and empower individuals to engage in political discourse. It can facilitate communication between citizens and government officials, enabling greater transparency and accountability. Additionally, it can assist in analyzing vast amounts of data, helping policymakers make informed decisions. However, concerns have been raised regarding the potential misuse of ChatGPT in spreading disinformation or manipulating public opinion. The technology's ability to generate realistic and persuasive content raises ethical and regulatory challenges, necessitating careful consideration of its deployment to ensure fair and responsible use. As a result, the political impact of ChatGPT remains complex, with both potential benefits and risks to navigate."
}

We just run the same query but with a different $new_report bound.

Now if you query the database for article 42, you will see that its comments contain both reports!

There are many more things you can do with Json values: refer to Functions and operators and Types for more details.

Misc

In this version the semantics of %if in imperative scripts has changed: now a relation is considered truthy as long as it contains any row at all, regardless of the content of its rows. We found the old behaviour confusing in most circumstances.

Happy hacking!

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	abs() (in module Func.Math)

 	acos() (in module Func.Math)

 	acosh() (in module Func.Math)

 	add() (in module Func.Math)

 	and() (in module Aggr.SemiLattice)

 	(in module Func.Bool)

 	
 	append() (in module Func.List)

 	asin() (in module Func.Math)

 	asinh() (in module Func.Math)

 	assert() (in module Func.Bool)

 	atan() (in module Func.Math)

 	atan2() (in module Func.Math)

 	atanh() (in module Func.Math)

B

 	
 	backup() (in module API)

 	BetweennessCentrality() (in module Algo)

 	BFS() (in module Algo)

 	bit_and() (in module Aggr.SemiLattice)

 	(in module Func.Bin)

 	
 	bit_not() (in module Func.Bin)

 	bit_or() (in module Aggr.SemiLattice)

 	(in module Func.Bin)

 	bit_xor() (in module Aggr.Ord)

 	(in module Func.Bin)

 	BreadthFirstSearch() (in module Algo)

C

 	
 	ceil() (in module Func.Math)

 	chars() (in module Func.String)

 	choice() (in module Aggr.SemiLattice)

 	choice_rand() (in module Aggr.Ord)

 	chunks() (in module Func.List)

 	chunks_exact() (in module Func.List)

 	ClosenessCentrality() (in module Algo)

 	ClusteringCoefficients() (in module Algo)

 	coalesce() (in module Func.Typing)

 	collect() (in module Aggr.Ord)

 	CommunityDetectionLouvain() (in module Algo)

 	
 	concat() (in module Func.List)

 	(in module Func.String)

 	(in module Func.Vector)

 	ConnectedComponents() (in module Algo)

 	Constant() (in module Algo)

 	cos() (in module Func.Math)

 	cos_dist() (in module Func.Vector)

 	cosh() (in module Func.Math)

 	count() (in module Aggr.Ord)

 	count_unique() (in module Aggr.Ord)

 	CsvReader() (in module Algo)

D

 	
 	decode_base64() (in module Func.Bin)

 	deg_to_rad() (in module Func.Math)

 	DegreeCentrality() (in module Algo)

 	DepthFirstSearch() (in module Algo)

 	
 	DFS() (in module Algo)

 	difference() (in module Func.List)

 	div() (in module Func.Math)

 	dump_json() (in module Func.Vector)

E

 	
 	encode_base64() (in module Func.Bin)

 	ends_with() (in module Func.String)

 	eq() (in module Func.EqCmp)

 	
 	exp() (in module Func.Math)

 	exp2() (in module Func.Math)

 	export_relations() (in module API)

F

 	
 	first() (in module Func.List)

 	floor() (in module Func.Math)

 	
 	format_timestamp() (in module Func.Regex)

 	from_substrings() (in module Func.String)

G

 	
 	ge() (in module Func.EqCmp)

 	get() (in module Func.List)

 	(in module Func.Vector)

 	
 	group_count() (in module Aggr.Ord)

 	gt() (in module Func.EqCmp)

H

 	
 	haversine() (in module Func.Math)

 	
 	haversine_deg_input() (in module Func.Math)

I

 	
 	import_from_backup() (in module API)

 	import_relations() (in module API)

 	intersection() (in module Aggr.SemiLattice)

 	(in module Func.List)

 	ip_dist() (in module Func.Vector)

 	is_bytes() (in module Func.Typing)

 	is_finite() (in module Func.Typing)

 	is_float() (in module Func.Typing)

 	is_in() (in module Func.List)

 	
 	is_infinite() (in module Func.Typing)

 	is_int() (in module Func.Typing)

 	is_json() (in module Func.Vector)

 	is_list() (in module Func.Typing)

 	is_nan() (in module Func.Typing)

 	is_null() (in module Func.Typing)

 	is_num() (in module Func.Typing)

 	is_string() (in module Func.Typing)

 	is_uuid() (in module Func.Typing)

J

 	
 	json() (in module Func.Vector)

 	json_object() (in module Func.Vector)

 	
 	json_to_scalar() (in module Func.Vector)

 	JsonReader() (in module Algo)

K

 	
 	KShortestPathYen() (in module Algo)

L

 	
 	l2_dist() (in module Func.Vector)

 	l2_normalize() (in module Func.Vector)

 	LabelPropagation() (in module Algo)

 	last() (in module Func.List)

 	latest_by() (in module Aggr.Ord)

 	le() (in module Func.EqCmp)

 	length() (in module Func.Bin)

 	(in module Func.List)

 	(in module Func.String)

 	
 	list() (in module Func.List)

 	ln() (in module Func.Math)

 	log10() (in module Func.Math)

 	log2() (in module Func.Math)

 	lowercase() (in module Func.String)

 	lt() (in module Func.EqCmp)

M

 	
 	max() (in module Aggr.SemiLattice)

 	(in module Func.EqCmp)

 	maybe_get() (in module Func.List)

 	(in module Func.Vector)

 	mean() (in module Aggr.Ord)

 	min() (in module Aggr.SemiLattice)

 	(in module Func.EqCmp)

 	
 	min_cost() (in module Aggr.SemiLattice)

 	MinimumSpanningForestKruskal() (in module Algo)

 	MinimumSpanningTreePrim() (in module Algo)

 	minus() (in module Func.Math)

 	mod() (in module Func.Math)

 	mul() (in module Func.Math)

N

 	
 	negate() (in module Func.Bool)

 	
 	neq() (in module Func.EqCmp)

 	now() (in module Func.Regex)

O

 	
 	or() (in module Aggr.SemiLattice)

 	(in module Func.Bool)

P

 	
 	pack_bits() (in module Func.Bin)

 	PageRank() (in module Algo)

 	parse_json() (in module Func.Vector)

 	
 	parse_timestamp() (in module Func.Regex)

 	pow() (in module Func.Math)

 	prepend() (in module Func.List)

 	product() (in module Aggr.Ord)

R

 	
 	rad_to_deg() (in module Func.Math)

 	rand_bernoulli() (in module Func.Rand)

 	rand_choose() (in module Func.Rand)

 	rand_float() (in module Func.Rand)

 	rand_int() (in module Func.Rand)

 	rand_uuid_v1() (in module Func.Rand)

 	rand_uuid_v4() (in module Func.Rand)

 	rand_vec() (in module Func.Rand)

 	(in module Func.Vector)

 	RandomWalk() (in module Algo)

 	
 	regex_extract() (in module Func.Regex)

 	regex_extract_first() (in module Func.Regex)

 	regex_matches() (in module Func.Regex)

 	regex_replace() (in module Func.Regex)

 	regex_replace_all() (in module Func.Regex)

 	remove_json_path() (in module Func.Vector)

 	ReorderSort() (in module Algo)

 	restore() (in module API)

 	reverse() (in module Func.List)

 	round() (in module Func.Math)

S

 	
 	SCC() (in module Algo)

 	set_json_path() (in module Func.Vector)

 	shortest() (in module Aggr.SemiLattice)

 	ShortestPathAStar() (in module Algo)

 	ShortestPathBFS() (in module Algo)

 	ShortestPathDijkstra() (in module Algo)

 	signum() (in module Func.Math)

 	sin() (in module Func.Math)

 	sinh() (in module Func.Math)

 	
 	slice() (in module Func.List)

 	smallest_by() (in module Aggr.Ord)

 	sorted() (in module Func.List)

 	sqrt() (in module Func.Math)

 	starts_with() (in module Func.String)

 	std_dev() (in module Aggr.Ord)

 	str_includes() (in module Func.String)

 	StronglyConnectedComponent() (in module Algo)

 	sub() (in module Func.Math)

 	sum() (in module Aggr.Ord)

T

 	
 	tan() (in module Func.Math)

 	tanh() (in module Func.Math)

 	to_bool() (in module Func.Typing)

 	to_float() (in module Func.Typing)

 	to_int() (in module Func.Typing)

 	to_string() (in module Func.Typing)

 	
 	to_unity() (in module Func.Typing)

 	to_uuid() (in module Func.Typing)

 	TopSort() (in module Algo)

 	trim() (in module Func.String)

 	trim_end() (in module Func.String)

 	trim_start() (in module Func.String)

U

 	
 	unicode_normalize() (in module Func.String)

 	union() (in module Aggr.SemiLattice)

 	(in module Func.List)

 	
 	unique() (in module Aggr.Ord)

 	unpack_bits() (in module Func.Bin)

 	uppercase() (in module Func.String)

 	uuid_timestamp() (in module Func.Typing)

V

 	
 	validity() (in module Func.Regex)

 	
 	variance() (in module Aggr.Ord)

 	vec() (in module Func.Vector)

W

 	
 	windows() (in module Func.List)

_static/file.png

nav.xhtml

 Table of Contents

 		
 Cozo database documentation

 		
 Tutorial

 		
 First steps

 		
 Expressions

 		
 Rules and relations

 		
 Stored relations

 		
 Graphs

 		
 Negation

 		
 Recursion

 		
 Aggregation

 		
 Query options

 		
 Fixed rules

 		
 Time travel

 		
 Extended example: the air routes dataset

 		
 A tour of graph algorithms

 		
 Importing dataset the hard way

 		
 Queries

 		
 Inline rules

 		
 Atoms

 		
 Head

 		
 Multiple definitions and disjunction

 		
 Negation

 		
 Recursion

 		
 Aggregation

 		
 Fixed rules

 		
 Query options

 		
 Stored relations and transactions

 		
 Stored relations

 		
 Create and replace

 		
 Put, update, remove, ensure and ensure-not

 		
 Chaining queries

 		
 Multi-statement transaction

 		
 Indices

 		
 Triggers

 		
 Storing large values

 		
 Proximity searches

 		
 HNSW (Hierarchical Navigable Small World) indices for vectors

 		
 MinHash-LSH for near-duplicate indexing of strings and lists

 		
 Full-text search (FTS)

 		
 Text tokenization and filtering

 		
 Time travel

 		
 System ops

 		
 Explain

 		
 Ops for stored relations

 		
 Monitor and kill

 		
 Maintenance

 		
 Types

 		
 Runtime types

 		
 Literals

 		
 Column types

 		
 Query execution

 		
 Disjunctive normal form

 		
 Stratification

 		
 Magic set rewrites

 		
 Semi-naïve evaluation

 		
 Ordering of atoms

 		
 Evaluating atoms

 		
 Early stopping

 		
 Tips for writing queries

 		
 Dealing with nulls

 		
 How to join relations

 		
 Functions and operators

 		
 Non-functions

 		
 Operators representing functions

 		
 Equality and Comparisons

 		
 eq

 		
 neq

 		
 gt

 		
 ge

 		
 lt

 		
 le

 		
 max

 		
 min

 		
 Boolean functions

 		
 and

 		
 or

 		
 negate

 		
 assert

 		
 Mathematics

 		
 add

 		
 sub

 		
 mul

 		
 div

 		
 minus

 		
 pow

 		
 sqrt

 		
 mod

 		
 abs

 		
 signum

 		
 floor

 		
 ceil

 		
 round

 		
 exp

 		
 exp2

 		
 ln

 		
 log2

 		
 log10

 		
 sin

 		
 cos

 		
 tan

 		
 asin

 		
 acos

 		
 atan

 		
 atan2

 		
 sinh

 		
 cosh

 		
 tanh

 		
 asinh

 		
 acosh

 		
 atanh

 		
 deg_to_rad

 		
 rad_to_deg

 		
 haversine

 		
 haversine_deg_input

 		
 Vector functions

 		
 vec

 		
 rand_vec

 		
 l2_normalize

 		
 l2_dist

 		
 ip_dist

 		
 cos_dist

 		
 Json funcitons

 		
 json

 		
 is_json

 		
 json_object

 		
 dump_json

 		
 parse_json

 		
 get

 		
 maybe_get

 		
 set_json_path

 		
 remove_json_path

 		
 json_to_scalar

 		
 concat

 		
 String functions

 		
 length

 		
 concat

 		
 str_includes

 		
 lowercase

 		
 uppercase

 		
 trim

 		
 trim_start

 		
 trim_end

 		
 starts_with

 		
 ends_with

 		
 unicode_normalize

 		
 chars

 		
 from_substrings

 		
 List functions

 		
 list

 		
 is_in

 		
 first

 		
 last

 		
 get

 		
 maybe_get

 		
 length

 		
 slice

 		
 concat

 		
 prepend

 		
 append

 		
 reverse

 		
 sorted

 		
 chunks

 		
 chunks_exact

 		
 windows

 		
 union

 		
 intersection

 		
 difference

 		
 Binary functions

 		
 length

 		
 bit_and

 		
 bit_or

 		
 bit_not

 		
 bit_xor

 		
 pack_bits

 		
 unpack_bits

 		
 encode_base64

 		
 decode_base64

 		
 Type checking and conversions

 		
 coalesce

 		
 to_string

 		
 to_float

 		
 to_int

 		
 to_unity

 		
 to_bool

 		
 to_uuid

 		
 uuid_timestamp

 		
 is_null

 		
 is_int

 		
 is_float

 		
 is_finite

 		
 is_infinite

 		
 is_nan

 		
 is_num

 		
 is_bytes

 		
 is_list

 		
 is_string

 		
 is_uuid

 		
 Random functions

 		
 rand_float

 		
 rand_bernoulli

 		
 rand_int

 		
 rand_choose

 		
 rand_uuid_v1

 		
 rand_uuid_v4

 		
 rand_vec

 		
 Regex functions

 		
 regex_matches

 		
 regex_replace

 		
 regex_replace_all

 		
 regex_extract

 		
 regex_extract_first

 		
 Regex syntax

 		
 Timestamp functions

 		
 now

 		
 format_timestamp

 		
 parse_timestamp

 		
 validity

 		
 Aggregations

 		
 Semi-lattice aggregations

 		
 min

 		
 max

 		
 and

 		
 or

 		
 union

 		
 intersection

 		
 choice

 		
 min_cost

 		
 shortest

 		
 bit_and

 		
 bit_or

 		
 Ordinary aggregations

 		
 count

 		
 count_unique

 		
 collect

 		
 unique

 		
 group_count

 		
 bit_xor

 		
 latest_by

 		
 smallest_by

 		
 choice_rand

 		
 Statistical aggregations

 		
 Utilities and algorithms

 		
 Utilities

 		
 Constant

 		
 ReorderSort

 		
 CsvReader

 		
 JsonReader

 		
 Connectedness algorithms

 		
 ConnectedComponents

 		
 StronglyConnectedComponent

 		
 SCC

 		
 MinimumSpanningForestKruskal

 		
 MinimumSpanningTreePrim

 		
 TopSort

 		
 Pathfinding algorithms

 		
 ShortestPathBFS

 		
 ShortestPathDijkstra

 		
 KShortestPathYen

 		
 BreadthFirstSearch

 		
 BFS

 		
 DepthFirstSearch

 		
 DFS

 		
 ShortestPathAStar

 		
 Community detection algorithms

 		
 ClusteringCoefficients

 		
 CommunityDetectionLouvain

 		
 LabelPropagation

 		
 Centrality measures

 		
 DegreeCentrality

 		
 PageRank

 		
 ClosenessCentrality

 		
 BetweennessCentrality

 		
 Miscellaneous

 		
 RandomWalk

 		
 Beyond CozoScript

 		
 export_relations

 		
 import_relations

 		
 backup

 		
 restore

 		
 import_from_backup

 		
 Callbacks

 		
 Notes

 		
 Some use cases for Cozo

 		
 Interconnected relations

 		
 Just a graph

 		
 Hidden structures

 		
 Knowledge augmentation

 		
 Cozo runs (almost) everywhere

 		
 On performance

 		
 The setup

 		
 Loading data

 		
 Transactional queries (OLTP)

 		
 Analytical queries (OLAP)

 		
 Conclusion

 		
 Time travel in a database: a Cozo story

 		
 The cost of time travel

 		
 Dreamy indices

 		
 Back to reality

 		
 But what about performance?

 		
 Cozo 0.5: the versatile embeddable graph database with Datalog is half-way 1.0

 		
 Experience CozoDB: The Hybrid Relational-Graph-Vector Database - The Hippocampus for LLMs

 		
 Introduction

 		
 The emergence of vector search in CozoDB

 		
 Toward the hippocampus for AI

 		
 Version 0.7: MinHash-LSH near-duplicate indexing, Full-text search (FTS) indexing, Json values and update

 		
 MinHash-LSH indices

 		
 Full-text search

 		
 Json values and update

 		
 Misc

_static/plus.png

_static/minus.png

_images/p2c.png

_images/p3c.png
»

- o ofs

\Vlllll‘lll

!
2 a8
g

_images/p1c.png

_images/p6c.png
